珠峰及周边地区强震影响垂直形变特征研究

党亚民, 程传录, 杨强, 蒋光伟, 孙洋洋

党亚民, 程传录, 杨强, 蒋光伟, 孙洋洋. 珠峰及周边地区强震影响垂直形变特征研究[J]. 武汉大学学报 ( 信息科学版), 2022, 47(1): 26-35. DOI: 10.13203/j.whugis20210545
引用本文: 党亚民, 程传录, 杨强, 蒋光伟, 孙洋洋. 珠峰及周边地区强震影响垂直形变特征研究[J]. 武汉大学学报 ( 信息科学版), 2022, 47(1): 26-35. DOI: 10.13203/j.whugis20210545
DANG Yamin, CHENG Chuanlu, YANG Qiang, JIANG Guangwei, SUN Yangyang. Vertical Deformation Characteristics Affected by Strong Earthquakes in Mount Qomolangma and Surrounding Areas[J]. Geomatics and Information Science of Wuhan University, 2022, 47(1): 26-35. DOI: 10.13203/j.whugis20210545
Citation: DANG Yamin, CHENG Chuanlu, YANG Qiang, JIANG Guangwei, SUN Yangyang. Vertical Deformation Characteristics Affected by Strong Earthquakes in Mount Qomolangma and Surrounding Areas[J]. Geomatics and Information Science of Wuhan University, 2022, 47(1): 26-35. DOI: 10.13203/j.whugis20210545

珠峰及周边地区强震影响垂直形变特征研究

基金项目: 

国家自然科学基金 41974010

中国测绘科学研究院基本科研业务费 AR2004

详细信息
    作者简介:

    党亚民,博士,研究员,主要研究方向为大地测量基准与地球动力学。dangym@casm.ac.cn

    通讯作者:

    杨强,博士,副研究员。yangqiang@casm.ac.cn

  • 中图分类号: P228

Vertical Deformation Characteristics Affected by Strong Earthquakes in Mount Qomolangma and Surrounding Areas

Funds: 

The National Natural Science Foundation of China 41974010

the Fundamental Scientific Research Funds of Chinese Academy of Surveying and Mapping AR2004

More Information
    Author Bio:

    DANG Yamin, PhD, professor, majors in geodetic datum and geodynamics. E-mail: dangym@casm.ac.cn

    Corresponding author:

    YANG Qiang, PhD, associate professor. E-mail: yangqiang@casm.ac.cn

  • 摘要: 2015年尼泊尔地震对珠穆朗玛峰高程的影响,近年一直受到全世界关注。2020年珠穆朗玛峰高程测量在珠穆朗玛峰及周边地区布设了高精度的全球导航卫星系统(global navigation satellite system, GNSS)形变监测网,收集了1999—2020年跨喜马拉雅山脉的32个连续运行参考站(continuously operating reference stations, CORS)的GNSS连续观测数据。利用GNSS数据监测了珠穆朗玛峰周边地区地壳三维形变特征,定量获取了2015年尼泊尔强震对珠穆朗玛峰周边CORS同震位移,以及地震对区域地壳三维形变长期趋势的影响,特别是对该地区垂直形变的影响。研究结果表明,该区域地壳垂直形变由南至北跨喜马拉雅山脉呈明显的阶梯型分布特征;震后印度板块与欧亚板块存在加速汇聚趋势,导致震后地壳隆升速率同步增大。
    Abstract:
      Objectives  The impact of the 2015 Nepal earthquake on the height of Mount Qomolangma has attracted worldwide attention in recent years. 2020 height measurement of Mount Qomolangma has set up a high-precision GNSS(global navigation satellite system) deformation monitoring network in Mount Qomolangma and its surrounding areas. In addition, we have collected the GNSS observation datum of 32 CORS(continuously operating reference stations) across the Himalayas during 1999 to 2020.
      Methods  We monitor the three-dimensional crustal deformation characteristics of Mount Qomolangma and surrounding areas, and quantitatively obtained the co-seismic displacement of the CORS around the Mount Qomolangma of the 2015 Nepal earthquake, as well as the impact of the earthquake on the long-term trend of regional three-dimensional crustal deformation, especially on the vertical deformation in this region.
      Results  The results show that the vertical crustal deformation in this area has obvious stepped distribution characteristics from south to north across the Himalayas. After the earthquake, there was an accelerated convergence trend between the Indian plate and the Eurasian plate, which led to the synchronous increase of the crustal uplift rate after the earthquake.
      Conclusions  The crustal rise in Mount Qomolangma and surrounding areas is the main trend. The 2015 Nepal earthquake caused the crustal decline in a short time, but did not change the long-term uplift trend.
  • 致谢: 感谢自然资源部第一大地测量队提供的2005年和2020年两次珠峰高程测量区域监测网GNSS数据,中国大陆构造环境监测网络提供的西藏CORS观测数据,美国卫星导航系统与地壳形变观测研究大学联合体提供的尼泊尔CORS观测数据;感谢GAMIT/GLOBK软件和GMT软件团队。
  • 图  1   CORS分布

    Figure  1.   Distribution of CORS

    图  2   CORS高程分布

    Figure  2.   Elevation Distribution of CORS

    图  3   CORS单天解时序

    Figure  3.   Time Series of CORS

    图  4   地震同震位移较大的站点

    Figure  4.   Stations with Large Coseismic Displacement

    图  5   在ITRF2014框架下CORS三维运动速率

    Figure  5.   3D Velocities of CORS in ITRF2014

    图  6   1999—2020年相对于位于印度板块和欧亚板块上的IGS站的垂直形变

    Figure  6.   Vertical Deformation Relative to Indian Plate and Eurasian Plate from 1999 to 2020

    图  7   CORS同震位移

    Figure  7.   Coseismic Displacement of CORS

    图  8   2015年尼泊尔地震前后CORS水平和垂直方向速率差异

    Figure  8.   Velocities Difference of Horizontal and Vertical Directions of CORS Before and After 2015 Nepal Earthquake

    图  9   2015年尼泊尔地震前后CORS N、E和高程方向运动速率差异

    Figure  9.   Velocities Difference of N, E and Height Directions of CORS Before and After the 2015 Nepal Earthquake

    图  10   1999—2015年应变率场(箭头表示主应变率)

    Figure  10.   Strain Rate Field of 1999 to 2015 (Arrow Indicates the Principal Strain Rate)

    图  11   2015-2020年应变率场

    Figure  11.   Strain Rate Field of 2015 to 2020

    图  12   2020年与2005年珠峰高程测量重合点高程差异

    Figure  12.   Elevation Difference of Coincidence Points of Everest Elevation Survey in 2020 and 2005

    表  1   单天解基线解算设置

    Table  1   Settings of Baseline Resolution

    参数 处理方式
    基线处理模式 RELAX
    观测值 LC+PC组合
    坐标框架 ITRF2014
    对流层延迟 GMF
    海潮改正 otl_FES2004
    固体潮模型 IERS2010
    光压模型 BERNE
    下载: 导出CSV
  • [1] 党亚民, 郭春喜, 蒋涛, 等. 2020珠峰测量与高程确定[J]. 测绘学报, 2021, 50(4): 556-561 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202104014.htm

    Dang Yamin, Guo Chunxi, Jiang Tao, et al. 2020 Height Measurement and Determination of Mount Qomolangma[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(4): 556-561 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202104014.htm

    [2]

    Bilham R, Gaur V K, Molnar P. Himalayan Seismic Hazard[J]. Science, 2001, 293 (5534): 1442-1444 doi: 10.1126/science.1062584

    [3]

    Tapponnier P, Xu Z Q, Roger F, et al. Oblique Stepwise Rise and Growth of the Tibet Plateau[J]. Science, 2001, 294(5547): 1671-1677 doi: 10.1126/science.105978

    [4]

    Bilham R, Larson K, Freymueller J. GPS Measurements of Present-Day Convergence Across the Nepal Himalaya[J]. Nature, 1997, 386(6620): 61-64 doi: 10.1038/386061a0

    [5] 许志琴, 杨经绥, 侯增谦, 等. 青藏高原大陆动力学研究若干进展[J]. 中国地质, 2016, 43(1): 1-42 https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201601001.htm

    Xu Zhiqin, Yang Jingsui, Hou Zengqian, et al. The Progress in the Study of Continental Dynamics of the Tibetan Plateau[J]. Geology in China, 2016, 43 (1): 1-42 https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201601001.htm

    [6] 杨强, 党亚民. 利用GPS速度场估算青藏高原地壳韧性层等效粘滞系数分布的研究[J]. 测绘学报, 2010, 39(5): 497-502 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201005012.htm

    Yang Qiang, Dang Yamin. A Research About Effective Viscosity of Tibetan Plateau Lithosphere Viscoelastic Ductile Layer Using GPS Velocity Fields [J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(5): 497-502 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201005012.htm

    [7] 许志琴, 杨经绥, 戚学祥, 等. 印度/亚洲碰撞: 南北向和东西向拆离构造与现代喜马拉雅造山机制再讨论[J]. 地质通报, 2006, 25(Z1): 1-14 https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2006Z1003.htm

    Xu Zhiqin, Yang Jingsui, Qi Xuexiang, et al. India-Asia Collision: A Further Discussion of N-S- and E-W-Trending Detachments and the Orogenic Mechanism of the Modern Himalayas[J]. Geological Bulletin of China, 2006, 25(Z1): 1-14 https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2006Z1003.htm

    [8] 许志琴, 杨经绥, 李海兵, 等. 青藏高原与大陆动力学: 地体拼合、碰撞造山及高原隆升的深部驱动力[J]. 中国地质, 2006, 3(2): 221-238 https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200602001.htm

    Xu Zhiqin, Yang Jingsui, Li Haibing, et al. The Qinghai-Tibet Plateau and Continental Dynamics: A Review on Terrain Tectonics, Collisional Orogenesis, and Processes and Mechanisms for the Rise of the Plateau[J]. Geology in China, 2006, 33(2): 221-238 https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200602001.htm

    [9] 姚华建, 尹九洵. 喜马拉雅造山带构造特征与2015年尼泊尔Mw 7.8级大地震[J]. 科学通报, 2015, 60(27): 2656-2658 https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201527011.htm

    Yao Huajian, Yin Jiuxun. Structural Characteristics of Himalayan Orogenic Belt and the 2015 Nepal Mw 7.8 Earthquake[J]. Chinese Science Bulletin, 2015, 60(27): 2656-2658 https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201527011.htm

    [10] 刘静, 纪晨, 张金玉, 等. 2015年4月25日尼泊尔Mw 7.8级地震的孕震构造背景和特征[J]. 科学通报, 2015, 60(27): 2640-2655 https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201527010.htm

    Liu Jing, Ji Chen, Zhang Jinyu, et al. Tectonic Setting and General Features of Coseismic Rupture of the 25 April, 2015 Mw 7.8 Gorkha, Nepal Earthquake[J]. Chinese Science Bulletin, 2015, 60(27): 2640-2655 https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201527010.htm

    [11] 苏小宁, 王振, 孟国杰, 等. GPS观测的2015年尼泊尔Ms 8.1级地震震前应变积累及同震变形特征[J]. 科学通报, 2015, 60 (22): 2115-2123 https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201522007.htm

    Su Xiaoning, Wang Zhen, Meng Guojie, et al. Pre-seismic Strain Accumulation and Co-seismic Deformation of the 2015 Nepal Ms 8.1 Earthquake Observed by GPS[J]. Chinese Science Bulletin, 2015, 60(22): 2115-2123 https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201522007.htm

    [12] 王小瑞, 党引群, 高新妍, 等. 利用GPS监测网分析尼泊尔地震对珠峰地区及周边影响[J]. 全球定位系统, 2016, 41(3): 73-77 https://www.cnki.com.cn/Article/CJFDTOTAL-QUDW201603015.htm

    Wang Xiaorui, Dang Yinqun, Gao Xinyan, et al. Analysis Influence Everest Area Surrounding Nepal Earthquake with GPS Monitoring Network[J]. GNSS World of China, 2016, 41(3): 73-77 https://www.cnki.com.cn/Article/CJFDTOTAL-QUDW201603015.htm

    [13] 王虎, 李建成, 党亚民, 等. PPP网解UPD模糊度固定技术监测尼泊尔Ms 8.1级地震对中国珠峰地区及周边地震同震位移[J]. 测绘学报, 2016, 45(S2): 147-155 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB2016S2018.htm

    Wang Hu, Li Jiancheng, Dang Yamin, et al. Co-seismic Displacement of the 25 April 2015 Nepal Ms 8.1 Earthquake Effects on the China's Mount Everest Area Derived from GNSS Data Using the PPP Network Solution by UPD Ambiguity Fixed Technology[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(S2): 147-155 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB2016S2018.htm

    [14] 梁诗明. 基于GPS观测的青藏高原现今三维地壳运动研究[D]. 北京: 中国地震局地质研究所, 2014

    Liang Shiming. Three-Dimensional Velocity Field of Present-Day Crustal Motion of the Tibetan Plateau Inferred from GPS Measurements[D]. Beijing: Institute of Geology, China Earthquake Administration, 2014

    [15]

    Freymueller J, Bilham R, Bürgmann R, et al. Global Positioning System Measurements of Indian Plate Motion and Convergence Across the Lesser Himalaya[J]. Geophysical Research Letters, 1996, 23 (22): 3107-3110 doi: 10.1029/96GL02518

    [16]

    Bilham R, Larson K, Freymueller J. GPS Measurements of Present-Day Convergence Across the Nepal Himalaya[J]. Nature, 1997, 386(6620): 61-64 doi: 10.1038/386061a0

    [17]

    Bettinelli P, Avouac J P, Flouzat M, et al. Plate Motion of India and Interseismic Strain in the Nepal Himalaya from GPS and DORIS Measurements[J]. Journal of Geodesy, 2006, 80 (8/9/10/11): 567-589

    [18] 张国民, 马宏生, 王辉, 等. 中国大陆活动地块边界带与强震活动[J]. 地球物理学报, 2005, 48(3): 602-610 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200503017.htm

    Zhang Guomin, Ma Hongsheng, Wang Hui, et al. Boundaries Between Active-Tectonic Blocks and Strong Earthquakes in the China Mainland[J]. Chinese Journal of Geophysics, 2005, 48(3): 602-610 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200503017.htm

    [19] 张培震, 邓起东, 张国民, 等. 中国大陆的强震活动与活动地块[J]. 中国科学: 地球科学, 2003, 33(S1): 12-20 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2003S1001.htm

    Zhang Peizhen, Deng Qidong, Zhang Guomin, et al. Active Tectonic Blocks and Strong Earthquakes in Continent of China[J]. Science in China: Terrae, 2003, 33(S1): 12-20 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2003S1001.htm

    [20] 邓起东, 张培震, 冉勇康, 等. 中国活动构造基本特征[J]. 中国科学: 地球科学, 2002, 32(12): 1020-1030 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200212006.htm

    Deng Qidong, Zhang Peizhen, Ran Yongkang, et al. Basic Characteristics of Active Tectonics of China [J]. Science in China: Terrae, 2002, 32(12): 1020-1030 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200212006.htm

    [21] 王敏, 沈正康, 牛之俊, 等. 现今中国大陆地壳运动与活动块体模型[J]. 中国科学: 地球科学, 2003, 33(S1): 21-32 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2003S1002.htm

    Wang Min, Shen Zhengkang, Niu Zhijun, et al. The Present Crustal Movement of Chinese Mainland and Activities Block Model[J]. Science in China: Terrae, 2003, 33(S1): 21-32 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2003S1002.htm

    [22] 党亚民, 杨强, 梁诗明, 等. 川滇区域活动块体运动与应变特征地震影响分析[J]. 测绘学报, 2018, 47(5): 559-566 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201805002.htm

    Dang Yamin, Yang Qiang, Liang Shiming, et al. Block Movement and Strain Characteristics Effected by Earthquake in Sichuan-Yunnan Region[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(5): 559-566 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201805002.htm

    [23] 江在森, 刘经南. 应用最小二乘配置建立地壳运动速度场与应变场的方法[J]. 地球物理学报, 2010, 53(5): 1109-1117 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201005012.htm

    Jiang Zaisen, Liu Jingnan. The Method in Establishing Strain Field and Velocity Field of Crustal Movement Using Least Squares Collocation[J]. Chinese Journal of Geophysics, 2010, 53(5): 1109-1117 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201005012.htm

    [24] 顾国华. 大地形变测量中的应变计算[J]. 地壳形变与地震, 1989, 9(1): 38-45 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB198901004.htm

    Gu Guohua. Some Problems in Calculating Strains from Geodetic Data[J]. Crustal Deformation and Earthquake, 1989, 9(1): 38-45 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB198901004.htm

    [25] 姚宜斌, 刘强, 江国焰, 等. 华北地区应变率及其精度评定[J]. 武汉大学学报·信息科学版, 2015, 40(10): 1317-1323 doi: 10.13203/j.whugis20140001

    Yao Yibin, Liu Qiang, Jiang Guoyan, et al. Strain Rate and Its Accuracy Assessment in North China [J]. Geomatics and Information Science of Wuhan University, 2015, 40(10): 1317-1323 doi: 10.13203/j.whugis20140001

    [26] 党亚民, 程传录, 陈俊勇, 等. 2005珠峰测高GPS测量及其数据处理[J]. 武汉大学学报·信息科学版, 2006, 31(4): 297-300 http://ch.whu.edu.cn/article/id/2422

    Dang Yamin, Cheng Chuanlu, Chen Junyong, et al. GPS Data Processing of the 2005 Qomolangma Height Surveying[J]. Geomatics and Information Science of Wuhan University, 2006, 31 (4): 297-300 http://ch.whu.edu.cn/article/id/2422

    [27] 党亚民. 珠峰高程复测有关问题的探讨[J]. 测绘科学, 2005, 30(3): 101-103 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD200503031.htm

    Dang Yamin. Investigation on the Height Repetition Determination of Qomolangma Peak[J]. Science of Surveying and Mapping, 2005, 30(3): 101-103 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD200503031.htm

  • 期刊类型引用(30)

    1. 刘焱雄,陈义兰,杨龙,高珊. 基于测绘学角度探讨海岸线及其测定方法. 海洋科学进展. 2024(03): 425-436 . 百度学术
    2. 王继鹏,金云智,辛忠华,吉才宇,郭龙. 基于PSO-BP的北斗卫星导航海底高程拟合技术的研究. 天然气与石油. 2024(06): 153-160 . 百度学术
    3. 付五洲,许宝华,陆彬,李涛. 重力场模型在长江口岛礁垂直基准建立中的应用. 现代测绘. 2023(04): 57-60 . 百度学术
    4. 王双喜,肖强,孙雪洁. 复杂海域高精度海底地形测量关键问题研究. 海洋技术学报. 2022(01): 7-12 . 百度学术
    5. 周颖,王瑞. 远海PPK测量潮位用于深度基准面计算的研究. 港工技术. 2022(02): 23-26 . 百度学术
    6. 柯灝,赵建虎,周丰年,吴敬文,暴景阳,赵祥伟,谢朋朋. 联合大地水准面、海面地形和潮波运动数值模拟的长江口陆海垂直基准转换关系. 武汉大学学报(信息科学版). 2022(05): 731-737+746 . 百度学术
    7. 单瑞,李浩军,刘慧敏,赵钊,董凌宇,杜凯. GNSS PPP/INS紧组合模式下的远海无验潮水深测量. 海洋地质前沿. 2022(10): 87-93 . 百度学术
    8. 张颖,闫玉茹,章家保,李静,裘露露. 潮滩冲淤观测技术发展现状. 海洋科学. 2021(03): 152-162 . 百度学术
    9. 王森,刘立龙,黄良珂,周威. 基于潮汐调和分析的全球定位系统-多路径反射测量技术潮位预报. 科学技术与工程. 2021(09): 3481-3486 . 百度学术
    10. 魏荣灏,陈佳兵,徐达. 基于PPK无验潮的水下地形测量技术研究. 海洋技术学报. 2021(01): 57-62 . 百度学术
    11. 王挺,王萃. GNSS-PPK在远距离潮位观测的应用研究. 江西测绘. 2021(04): 8-11 . 百度学术
    12. 王正杰,王峰,吴自银,曹振轶,罗孝文,李守军. 基于GPS PPK技术确定测深点瞬时潮位及分析. 海洋技术学报. 2020(02): 58-63 . 百度学术
    13. 王小刚,赵薛强,许军. 珠江口瞬时水位解算方法研究及应用. 水利水电技术. 2020(11): 117-124 . 百度学术
    14. 梁冠辉,陶常飞,周兴华,周东旭,王朝阳. 新型远距离验潮系统集成设计与研制. 海洋科学进展. 2019(01): 129-139 . 百度学术
    15. 王智明,孙月文. 无验潮模式下的宁波杭州湾水下地形测量. 城市勘测. 2019(02): 157-159 . 百度学术
    16. 陈正伟,韩磊. 基于高精度GNSS定位解算及姿态数据获取潮位研究. 海洋技术学报. 2019(05): 55-59 . 百度学术
    17. 李梦昊,王胜利,高兴国,陈冠旭,刘焱雄. 基于混合编程的实时精密单点定位方法. 海岸工程. 2018(01): 66-73 . 百度学术
    18. 黄辰虎,陆秀平,边刚,黄贤源,管明雷,翟国君,黄谟涛. 中短期验潮站验潮零点不规则漂移精密处理. 武汉大学学报(信息科学版). 2018(11): 1673-1680 . 百度学术
    19. Yuanxi YANG,Tianhe XU,Shuqiang XUE. Progresses and Prospects of Marine Geodetic Datum and Marine Navigation in China. Journal of Geodesy and Geoinformation Science. 2018(01): 16-24 . 必应学术
    20. 臧建飞,范士杰,易昌华,秦学彬,华亮,麻德明. 实时精密单点定位的远海实时GPS潮汐观测. 测绘科学. 2017(06): 155-160 . 百度学术
    21. 臧建飞,范士杰,易昌华,秦学彬,陈冠旭,华亮. 远海实时GPS潮汐的实时精密单点定位观测. 测绘科学. 2017(08): 79-84 . 百度学术
    22. 杨元喜,徐天河,薛树强. 我国海洋大地测量基准与海洋导航技术研究进展与展望. 测绘学报. 2017(01): 1-8 . 百度学术
    23. 赵建虎,欧阳永忠,王爱学. 海底地形测量技术现状及发展趋势. 测绘学报. 2017(10): 1786-1794 . 百度学术
    24. 王朝阳,周兴华,李延刚,梁冠辉,付延光. 远距离GNSS潮位测量精度的影响因素研究. 海洋技术学报. 2017(03): 1-6 . 百度学术
    25. 辛保稳,李友龙. GPS PPK技术在海底地形测量中的应用. 科技展望. 2017(18): 161 . 百度学术
    26. 杨涛,葛俊洁,李路. GPS测量技术及其在工程测量中的应用. 电子测试. 2016(06): 126+125 . 百度学术
    27. 暴景阳,翟国君,许军. 海洋垂直基准及转换的技术途径分析. 武汉大学学报(信息科学版). 2016(01): 52-57 . 百度学术
    28. 周东旭,周兴华,梁冠辉,王朝阳,杨磊. GPS浮标天线高的动态标定方法. 测绘科学. 2015(12): 121-124 . 百度学术
    29. 赵建虎,王爱学. 精密海洋测量与数据处理技术及其应用进展. 海洋测绘. 2015(06): 1-7 . 百度学术
    30. 赵元元,殷行. 土地测量中GPS实时动态技术的应用研究. 价值工程. 2015(20): 161-162 . 百度学术

    其他类型引用(6)

图(12)  /  表(1)
计量
  • 文章访问数:  653
  • HTML全文浏览量:  257
  • PDF下载量:  112
  • 被引次数: 36
出版历程
  • 收稿日期:  2021-10-11
  • 发布日期:  2022-01-04

目录

    /

    返回文章
    返回