A Multi‑model Early Warning Method for Dam Displacement Behavior
-
摘要:
传统方法采用单一的模型开展大坝位移性态预警,虚假警报频次较高。为提升预警结果的可靠性,提出多模型联合预警方法。以水位-温度-时效模型(hydraulic-season-time, HST)、自回归滑动平均模型(autoregressive moving average, ARMA)为研究对象,采用核密度估计探讨了两类模型残差的一维分布规律。在此基础上,对两类模型的联合残差进行了频率分析,发现了联合残差非尾部弱相关、尾部强相关的分布特征。采用Copula函数对HST-ARMA联合残差进行拟合,得到了联合分布函数,实现了大坝位移性态的多模型联合预警。算例表明,采用单一的HST模型或ARMA模型预警,受建模序列特征以及模型结构特征的影响,虚假警报发生率高达23.17%~27.94%。而采用HST-ARMA联合预警,能够充分结合各模型的优势,虚假警报发生率可降至0.00%~0.63%。多模型联合预警能够有效降低虚假警报的发生频次,预警结果能够更加真实地反映大坝位移性态,可为提升大坝安全管理水平提供参考。
Abstract:ObjectivesThe traditional method uses a single monitoring model to conduct the early warning of dam displacement behavior. However, the single monitoring model may not reflect the real behavior of the dam due to its low accuracy, thus causing false alarms.
MethodsIn order to improve the reliability of early warning results, a new multi-model early warning method is proposed. The hydraulic-season-time (HST) model and autoregressive moving average (ARMA) model, which are the most common models in engineering, are taken as the basic model. First, the advantages and disadvantages of the two models in dealing with dam displacement monitoring data are analyzed. Then the one-dimensional residual distribution of the two models is discussed by kernel density estimation. On this basis, the frequency analysis of the joint residuals of HST-ARMA is carried out and it shows the joint residuals is weakly correlated in non-tail, but strongly correlated in tail. Finally, the Copula function is used to fit the joint residuals of HST-ARMA, and the joint distribution function is obtained, which realizes the joint early warning of dam displacement behavior with multiple models.
ResultsIt is verified by several measuring points on the wire alignment system of concrete dam. The case study shows that if a single HST model or ARMA model is used for early warning, the false alarm rate can reach 23.17%-27.94% due to the influence of modeling sequence features and model structure features. And if the HST-ARMA method is used, the false alarm rate can be reduced to 0.00%-0.63% due to combine the advantages of different models.
ConclusionsThe new method can combine the advantages of different models and avoid the disadvantages of the single model, thus effectively reducing the frequency of false alarms. The warning results of HST-ARMA method are more reliable and can more truly reflect the dam displacement behavior. It can provide reference for improving the dam safety management level.
-
Keywords:
- dam displacement /
- monitoring model /
- distribution analysis /
- Copula function /
- joint warning
-
http://ch.whu.edu.cn/cn/article/doi/10.13203/j.whugis20210321
-
表 1 单模型预警指标与多模型联合预警指标
Table 1 Index of Single Model Early Warning Method and Multi-model Joint Early Warning Method
预警方法 预警指标 正常 预警 异常 单模型预警 多模型联合预警 位于区域③ 位于区域② 位于区域① 概率 /% 95.46 4.27 0.27 表 2 HST模型参数
Table 2 HST Model Parameters
测点 参数 EX421 71.211 -0.022 -0.323 1.660 -0.033 0.014 -0.075 -0.091 -0.127 -0.439 1.258 EX423 7.883 - - - -0.034 0.050 -0.059 -0.201 -0.128 -0.401 0.827 EX424 96.232 -1.629 - 0.532 -0.039 0.035 -0.079 -0.145 -0.151 -0.388 1.351 EX425 154.376 -2.412 - 1.112 -0.035 - -0.055 -0.133 -0.138 -0.213 - 表 3 ARMA模型参数
Table 3 ARMA Model Parameters
测点 EX421 0.889 0.069 -0.038 0.022 0.036 EX423 0.892 0.058 0.039 0.007 - EX424 0.926 0.064 0.011 - - EX425 0.837 0.129 0.007 - - 表 4 建模期拟合精度评价指标
Table 4 Evaluation Indexes of Fitting Accuracy in the Modeling Period
误差指标 模型 测点 EX421 EX423 EX424 EX425 R HST 0.90 0.89 0.91 0.91 ARMA 0.93 0.91 0.92 0.94 S HST 1.50 1.22 1.20 1.25 ARMA 1.23 1.26 1.25 1.27 表 5 HST模型预报期警报率统计
Table 5 Statistics of Early Warning Rate of HST Model in the Forecast Period
测点 正常次数 轻度异常次数 异常次数 次数合计 轻度异常率/% 异常率/% 总警报率/% EX421 230 64 21 315 20.32 6.67 26.98 EX423 229 61 25 315 19.37 7.94 27.30 EX424 227 65 23 315 20.63 7.30 27.94 EX425 229 63 23 315 20.00 7.30 27.30 表 6 ARMA模型预报期警报率统计
Table 6 Statistics of Early Warning Rate of ARMA Model in the Forecast Period
测点 正常次数 轻度异常次数 异常次数 次数合计 轻度异常率/% 异常率/% 总警报率/% EX421 242 54 19 315 17.14 6.03 23.17 EX423 235 60 20 315 19.05 6.35 25.40 EX424 240 57 18 315 18.10 5.71 23.81 EX425 232 63 20 315 20.00 6.35 26.35 表 7 预报期HST模型与ARMA模型联合预警结果
Table 7 Joint Monitoring Results of HST Model and ARMA Model in the Forecast Period
测点 正常次数 轻度异常次数 异常次数 次数合计 轻度异常率/% 异常率/% 总警报率/% EX421 314 1 0 315 0.32 0 0.32 EX423 315 0 0 315 0.00 0 0.00 EX424 313 2 0 315 0.63 0 0.63 EX425 313 2 0 315 0.63 0 0.63 -
[1] 吴中如. 水工建筑物安全监控理论及其应用[M]. 北京: 高等教育出版社,2003. Wu Zhongru. Safety Monitoring Theory & Its Application of Hydraulic Structures[M]. Beijing: Higher Education Press,2003.
[2] Tonini D. Observed Behavior of Several Italian Arch Dams[J]. Journal of the Power Division,1956,82(6): 82-86.
[3] Johnson R A,Wichern D W. Applied Multivariate Statistical Analysis[M]. Beijing,China: TsingHua University Press,2008.
[4] 李明军,王均星,王亚洲. 基于改进粒子群优化算法和极限学习机的混凝土坝变形预测[J]. 天津大学学报(自然科学与工程技术版),2019,52(11): 1136-1144. Li Mingjun,Wang Junxing,Wang Yazhou. Deformation Prediction of Concrete Dam Based on Improved Particle Swarm Optimization Algorithm and Extreme Learning Machine[J]. Journal of Tianjin University (Science and Technology),2019,52(11): 1136-1144.
[5] Stojanovic B,Milivojevic M,Milivojevic N,et al. A Self-Tuning System for Dam Behavior Modeling Based on Evolving Artificial Neural Networks[J]. Advances in Engineering Software,2016,97: 85-95.
[6] 魏博文,熊威,李火坤,等. 融合混沌残差的大坝位移蛙跳式组合预报模型[J]. 武汉大学学报(信息科学版),2016,41(9): 1272-1278. Wei Bowen,Xiong Wei,Li Huokun,et al. Dam Deformation Forecasting of Leapfrog Combined Model Merging Residual Errors of Chaos[J]. Geomatics and Information Science of Wuhan University,2016,41(9): 1272-1278.
[7] 钱秋培,崔伟杰,包腾飞,等. 基于SVM的混凝土坝变形监控模型预测能力实例分析[J]. 长江科学院院报,2018,35(8): 46-50. Qian Qiupei,Cui Weijie,Bao Tengfei,et al. Case Analysis of the Prediction Ability of SVM-Based Monitoring Model for Concrete Dam Deformation[J]. Journal of Yangtze River Scientific Research Institute,2018,35(8): 46-50.
[8] Su H Z,Wen Z P,Sun X R,et al. Rough Set-Support Vector Machine-Based Real-Time Monitoring Model of Safety Status During Dangerous Dam Reinforcement[J]. International Journal of Damage Mechanics,2017,26(4): 501-522.
[9] 李斌,胡德秀,杨杰,等. 基于MLR-SARIMA模型的土石坝位移预测[J]. 工程科学与技术,2019,51(2): 108-114. Li Bin,Hu Dexiu,Yang Jie,et al. Displacement Prediction of Earth Dam Based on MLR-SARIMA Model[J]. Advanced Engineering Sciences,2019,51(2): 108-114.
[10] Chen B,Hu T Y,Huang Z S,et al. A Spatio-Temporal Clustering and Diagnosis Method for Concrete Arch Dams Using Deformation Monitoring Data[J]. Structural Health Monitoring,2019,18(5/6): 1355-1371.
[11] 肖儒雅,何秀凤. 时序InSAR水库大坝形变监测应用研究[J]. 武汉大学学报(信息科学版),2019,44(9): 1334-1341. Xiao Ruya,He Xiufeng. Deformation Monitoring of Reservoirs and Dams Using Time-Series InSAR[J]. Geomatics and Information Science of Wuhan University,2019,44(9): 1334-1341.
[12] Flah M,Nunez I,Ben Chaabene W,et al. Machine Learning Algorithms in Civil Structural Health Monitoring: A Systematic Review[J]. Archives of Computational Methods in Engineering,2021,28(4): 2621-2643.
[13] Kang F,Liu X,Li J J. Temperature Effect Modeling in Structural Health Monitoring of Concrete Dams Using Kernel Extreme Learning Machines[J]. Structural Health Monitoring,2020,19(4): 987-1002.
[14] 谷艳昌,王士军,庞琼,等. 基于风险管理的混凝土坝变形预警指标拟定研究[J]. 水利学报,2017,48(4): 480-487. Gu Yanchang,Wang Shijun,Pang Qiong,et al. Study on Early Warning Index of Concrete Dam’s Deformation Based on the Risk Management[J]. Journal of Hydraulic Engineering,2017,48(4): 480-487.
[15] Chen S Y,Gu C S,Lin C N,et al. Prediction of Arch Dam Deformation via Correlated Multi-target Stacking[J]. Applied Mathematical Modelling,2021,91: 1175-1193.
[16] Hamilton J D. Time Series Analysis[M]. Princeton,USA: Princeton University Press,1994.
[17] 蔡舒凌,李二兵,陈亮,等. 基于FA-NAR动态神经网络的隧洞围岩变形时序预测研究[J]. 岩石力学与工程学报,2019,38(S2): 3346-3353. Cai Shuling,Li Erbing,Chen Liang,et al. The Time Series Prediction of Tunnel Surrounding Rock Deformation Based on FA-NAR Dynamic Neural Network[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(S2): 3346-3353.
[18] 何金平. 大坝安全监测理论与应用[M]. 北京: 中国水利水电出版社,2010. He Jinping. Theory and Application of Dam Safety Monitoring[M]. Beijing: China Water & Power Press,2010.
[19] Tsionas M G,Andrikopoulos A. On a High-Dimensional Model Representation Method Based on Copulas[J]. European Journal of Operational Research,2020,284(3): 967-979.
[20] Geidosch M,Fischer M. Application of Vine Copulas to Credit Portfolio Risk Modeling[J]. Journal of Risk and Financial Management,2016,9(2): 4.
[21] Taaffe K,Pearce B,Ritchie G. Using Kernel Density Estimation to Model Surgical Procedure Duration[J]. International Transactions in Operational Research,2021,28(1): 401-418.
[22] 王树良,李英,耿晶. 高维数据非参数密度估计的低维流形代表点法[J]. 武汉大学学报(信息科学版),2021,46(1): 65-70. Wang Shuliang,Li Ying,Geng Jing. A Low-Dimensional Manifold Representative Point Method to Estimate the Non-parametric Density for High-Dimensional Data[J]. Geomatics and Information Science of Wuhan University,2021,46(1): 65-70.
[23] 李宏男,李钢,郑晓伟,等. 工程结构在多灾害耦合作用下的研究进展[J]. 土木工程学报,2021,54(5): 1-14. Li Hongnan,Li Gang,Zheng Xiaowei,et al. Research Progress in Engineering Structures Subject to Multiple Hazards[J]. China Civil Engineering Journal,2021,54(5): 1-14.
[24] 王颖,于忱,王红瑞,等. 基于条件混合三维Copula函数的多支流干流年最大流量模型研究[J]. 应用基础与工程科学学报,2021,29(1): 64-77. Wang Ying,Yu Chen,Wang Hongrui,et al. Study of Flood Coincidence Probability for Multi-tributary Based on Mixed Conditional 3D-Copula Function[J]. Journal of Basic Science and Engineering,2021,29(1): 64-77.
[25] 孔宪京,宋来福,徐斌,等. 基于Copula函数的堆石料非线性强度参数相关性及分布模型研究[J]. 岩土工程学报,2020,42(5): 797-807. Kong Xianjing,Song Laifu,Xu Bin,et al. Correlation and Distribution Model for Nonlinear Strength Parameters of Rockfill Based on Copula Function[J]. Chinese Journal of Geotechnical Engineering,2020,42(5): 797-807.
[26] 陈子燊,黄强,刘曾美. 基于非对称Archimedean Copula的三变量洪水风险评估[J]. 水科学进展,2016,27(5): 763-771. Chen Zishen,Huang Qiang,Liu Zengmei. Risk Assessment of Trivariate Flood Based on Asymmetric Archimedean Copulas[J]. Advances in Water Science,2016,27(5): 763-771.
-
期刊类型引用(14)
1. 刘学习,朱守庆,陈国,张克非,郑南山,刘婧璇. 基于全球统一坐标框架的GNSS精密轨道与钟差产品一致性分析. 测绘学报. 2025(03): 432-447 . 百度学术
2. 冯晓亮,陈欢,李厚芝. 不同观测环境中的多模GNSS数据质量自动化检测方法. 测绘工程. 2024(06): 56-61 . 百度学术
3. 刘嘉伟,孙保琪,韩蕊,张喆,王侃,袁海波,杨旭海. GNSS多系统RTK授时性能分析. 导航定位与授时. 2023(03): 49-58 . 百度学术
4. 王浩浩,郝明,庄文泉. GNSS实时卫星钟差估计在地震监测中的应用. 导航定位与授时. 2023(03): 108-116 . 百度学术
5. 周长江,余海锋,王林伟,雷云平,岳彩亚. 无频间钟偏差改正的BDS-2三频非组合PPP随机模型优化. 测绘通报. 2023(12): 164-168 . 百度学术
6. 潘丽静,刘翔,夏川茹,王雷雷. GNSS精密卫星钟差实时估计与分析. 城市勘测. 2021(06): 73-76 . 百度学术
7. 郭磊,王甫红,桑吉章,张万威. 一种新的利用历元间位置变化量约束的GNSS导航算法. 武汉大学学报(信息科学版). 2020(01): 21-27 . 百度学术
8. 陶钧,张柔. GPS/BeiDou/Galileo/GLONASS实时精密卫星钟差估计. 测绘地理信息. 2020(03): 102-106 . 百度学术
9. 黄观文,王浩浩,谢威,曹钰. GNSS实时卫星钟差估计技术进展. 导航定位与授时. 2020(05): 1-9 . 百度学术
10. 张浩,赵兴旺,陈佩文,谢毅. GPS/BDS卫星钟差融合解算模型及精度分析. 合肥工业大学学报(自然科学版). 2020(09): 1192-1196 . 百度学术
11. 叶珍,李浩军. GNSS卫星钟差估计与结果分析. 导航定位与授时. 2019(03): 88-94 . 百度学术
12. 盛剑锋,张彩红,谭凯. 一种全球导航卫星系统钟差估计优化方案的量化研究. 科学技术与工程. 2019(14): 14-21 . 百度学术
13. 王尔申,赵珩,曲萍萍,庞涛,孙军. 基于拉格朗日插值法的卫星导航空间信号精度评估算法. 沈阳航空航天大学学报. 2019(04): 43-48 . 百度学术
14. 李云,崔文刚. 精密单点定位技术发展及应用. 科学技术与工程. 2019(27): 1-11 . 百度学术
其他类型引用(10)