-
摘要: 膨胀土高填方区域形变及其边坡稳定性是膨胀土灾害相关研究中的关键问题,针对安康机场填筑程度高、膨胀土分布范围大等特点导致的潜在地面形变问题,采用基于高程改正的时序合成孔径雷达干涉测量(interferometric synthetic aperture radar, InSAR)技术获取安康机场运营前期地表形变。安康机场飞行区、航站区以及膨胀土边坡稳定影响区3类典型区域形变时序结果表明,安康机场基本稳定,累积形变量较小,区域最大形变量为-21.7 mm,机场内部最大形变量为-15.9 mm,其形变量在民用机场岩土工程设计规范标准要求范围之内。进一步结合区域降水与填方层深数据分析发现,现存微小地表形变及其特殊规律为膨胀土填方区工后沉降与膨胀土胀缩性形变的联合作用所致。Abstract:Objectives The deformation of the high filling area of expansive soil and it's slope stability are key issues in the research related to expansive soil disasters. Ankang Airport's large-scale high-filling project on the expansive soil caused a threat to the stable operation of the airport.Methods Interferometric synthetic aperture radar (InSAR) technique based on elevation correction is used to obtain the surface deformation during the early operation of Ankang Airport. Firstly, we use small baseline subset InSAR (SBAS-InSAR) technology to correct the errors of digital elevation model (DEM) and obtain the time-series of the airport deformation.Secondly, we use persistent scatterer InSAR (PS-InSAR)technology to verify the accuracy of SBAS-InSAR results.Finally, we analyze the deformation trends of the flight area and the area affected by the stability of the expansive soil slope separately.Results The time-series results of the three types of typical regional deformations in Ankang Airport flight area, terminal area and expansive soil slope stability influence area show that Ankang Airport is basically stable, with a small cumulative deformation. The maximum regional deformation is -21.7 mm, and the maximum internal deformation of the airport is -15.9 mm, its deformation is within the requirements of civil airport geotechnical engineering design standards.Conclusions Combined with the analysis of regional precipitation and fill depth data, the existing small surface deformation and its special laws are caused by the combined effect of the post-construction settlement of the expansive soil fill area and the expansion and contraction deformation of the expansive soil.
-
Keywords:
- Ankang airport /
- expansive soil /
- time-series InSAR /
- stability monitoring
-
致谢: 本文Sentinel-1雷达影像数据由欧洲空间局提供,SRTM DEM地形数据由美国航空航天局提供,安康机场相关资料由陕西佳维空间地理信息科技有限公司提供,实测降雨数据由中国气象局、中国气象数据网提供,在此表示感谢。
-
表 1 方差分析表
Table 1 Variance Analysis
统计项 P1点 P2点 离差平方和 自由度 均方离差 F值 离差平方和 自由度 均方离差 F值 组间 12.644 1 12.644 0.68 7.314 1 7.314 0.2 组内 596.589 32 1 159.334 32 36.229 -
[1] 肖荣久. 陕南膨胀土及其灾害地质研究[M]. 西安: 陕西科学技术出版社, 1995: 19-27 Xiao Rongjiu. Study on the Expansive Soil and Its Hazard Geology in Southern Shaanxi[M]. Xi'an: Shaanxi Science and Technology Press, 1995: 19-27
[2] 杨果林, 滕珂, 秦朝辉. 膨胀土侧向膨胀力原位试验研究[J]. 中南大学学报(自然科学版), 2014, 45(7): 2 326-2 332 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201407026.htm Yang Guolin, Teng Ke, Qin Chaohui. In-situ Experimental Study on Lateral Swelling Force of Expansive Soil[J]. Journal of Central South University(Natural Science Edition), 2014, 45(7): 2 326-2 332 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201407026.htm
[3] 杨群峰. 匠心筑梦汉水滨-陕建集团推进安康机场迁建项目[EB/OL]. http://www.caacnews.com.cn/1/5/201809/t20180913_1255819.html, 2018 Yang Qunfeng. Ingenuity to Build Dreams on the Waterfront of Han River-Shaanxi Construction Group Promotes Ankang Airport Relocation Project[EB/OL]. http://www.caacnews.com.cn/1/5/201809/t20180913_1255819.html, 2018
[4] 徐泽民, 张倬元, 许强, 等. 九寨黄龙机场填方高边坡动力稳定性分析[J]. 岩石力学与工程学报, 2004, 11(23): 1 883-1 890 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200411022.htm Xu Zemin, Zhang Zhuoyuan, Xu Qiang, et al. Analysis of Dynamic Stability of High Fill Slope of Jiuzhai Huanglong Airport[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 11(23): 1 883- 1 890 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200411022.htm
[5] 李振洪, 宋闯, 余琛, 等. 卫星雷达遥感在滑坡灾害探测和监测中的应用: 挑战与对策[J]. 武汉大学学报·信息科学版, 2019, 44(7): 967-979 doi: 10.13203/j.whugis20190098 Li Zhenhong, Song Chuang, Yu Chen, et al. Application of Satellite Radar Remote Sensing in Landslide Hazard Detection and Monitoring: Challenges and Countermeasures[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 967-979 doi: 10.13203/j.whugis20190098
[6] Jiang Y, Liao M, Wang H, et al. Deformation Monitoring and Analysis of the Geological Environment of Pudong International Airport with Persistent Scatterer SAR Interferometry[J]. Remote Sensing, 2016, 8(12): 1021 doi: 10.3390/rs8121021
[7] Zhuo G C, Dai K R, Huang H N. Evaluating Potential Ground Subsidence Geo-Hazard of Xiamen Xiang'an New Airport on Reclaimed Land by SAR Interferometry[J]. Sustainability, 2020, 12: 6991 doi: 10.3390/su12176991
[8] Liu X, Zhao C, Zhang Q, et al. Characterizing and Monitoring Ground Settlement of Marine Reclamation Land of Xiamen New Airport, China with Sentinel-1 SAR Datasets[J]. Remote Sensing, 2019, 11 (5): 585 doi: 10.3390/rs11050585
[9] Wu S B, Yang Z F, Ding X L. Two Decades of Settlement of Hong Kong International Airport Measured with Multi-temporal InSAR[J]. Remote Sensing of Environment, 2020, 24(8): 111976 http://www.sciencedirect.com/science/article/pii/S0034425720303461
[10] Chen H, Wang Y, Zhang Y, et al. Surface Deformation of Kangding Airport, Qinghai-Tibet Plateau, China Using Insar Techniques and Multi-Temporal Sentinel-1 Datasets[C]//IGARSS 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, 2018
[11] 陈汉苧. 基于时序InSAR技术的川西高填方机场设施形变研究[D]. 成都: 电子科技大学, 2019 Chen Hanning. Research on the Deformation of West Sichuan High Fill Airport Facilities Based on Time Series InSAR Technology[D]. Chengdu: University of Electronic Science and Technology of China, 2019
[12] Chris M. Monitoring Tropical Peat Related Settlement Using ISBAS InSAR, Kuala Lumpur International Airport (KLIA)[J]. Engineering Geology, 2018, 244: 57-65 doi: 10.1016/j.enggeo.2018.07.015
[13] Jiang L, Lin H. Integrated Analysis of SAR Interferometric and Geological Data for Investigating Long-Term Reclamation Settlement of Chek Lap Kok Airport, Hong Kong[J]. Engineering Geology, 2010, 110: 77-92 doi: 10.1016/j.enggeo.2009.11.005
[14] Gabriel A K, Goldstein R M, Zebker H A. Mapping Small Elevation Changes over Large Areas: Differential Radar Interferometry[J]. Journal of Geophysical Research Solid Earth, 1989, 94: 9 183-9 191 doi: 10.1029/JB094iB07p09183
[15] 徐永福. 膨胀土的水力作用机理及膨胀变形理论[J]. 岩土工程学报, 2020, 42(11): 1 979-1 987 https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202011004.htm Xu Yongfu. The Hydraulic Mechanism and Swelling Deformation Theory of Expansive Soil[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 1 979-1 987 https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202011004.htm
[16] 王文良. 膨胀土高填方变形控制及边坡稳定性研究[D]. 西安: 长安大学, 2018 Wang Wenliang. Research on Deformation Control and Slope Stability of Expansive Soil High Fill[D]. Xi'an: Chang'an University, 2018
[17] 李振洪, 李鹏, 丁咚, 等. 全球高分辨率数字高程模型研究进展与展望[J]. 武汉大学学报·信息科学版, 2018, 43(12): 1 927-1 942 doi: 10.13203/j.whugis20180295 Li Zhenhong, Li Peng, Ding Dong, et al. Research Progress and Prospects of Global High-Resolution Digital Elevation Models[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1 927-1 942 doi: 10.13203/j.whugis20180295
[18] Rodríguez E, Morris C S, Belz J E. A Global Assessment of the SRTM Performance[J]. Photogrammetric Engineering & Remote Sensing, 2006, 72(3): 249-260
[19] Kolecka N, Kozak J. Assessment of the Accuracy of SRTM C- and X-Band High Mountain Elevation Data: A Case Study of the Polish Tatra Mountains[J]. Pure and Applied Geophysics, 2014, 171(6): 897-912 doi: 10.1007/s00024-013-0695-5
[20] 赵超英, 刘晓杰, 张勤, 等. 甘肃黑方台黄土滑坡InSAR识别、监测与失稳模式研究[J]. 武汉大学学报·信息科学版, 2019, 44(7): 996-1 007 doi: 10.13203/j.whugis20190072 Zhao Chaoying, Liu Xiaojie, Zhang Qin, et al. Study on InSAR Identification, Monitoring and Instability Mode of Heifangtai Loess Landslide in Gansu[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 996-1 007 doi: 10.13203/j.whugis20190072
[21] 刘斌, 葛大庆, 王珊珊, 等. TOPS和ScanSAR模式InSAR在广域地灾隐患识别中的联合应用[J]. 武汉大学学报·信息科学版, 2020, 45(11): 1 756-1 762 doi: 10.13203/j.whugis20200259 Liu Bin, Ge Daqing, Wang Shanshan, et al. Com bined Application of TOPS and ScanSAR Mode InSAR in Wide-Area Hazard Identification[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1 756-1 762 doi: 10.13203/j.whugis20200259
[22] Fattahi H, Amelung F. DEM Error Correction in InSAR Time Series[J]. IEEE Transactions on Geoscience and Remote Sensings, 2013, 51(7): 4 249-4 259 doi: 10.1109/TGRS.2012.2227761
[23] 李鹏, 李振洪, 施闯, 等. 中国地区30m分辨率SRTM质量评估[J]. 测绘通报, 2016(9): 24-28 https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB201609007.htm Li Peng, Li Zhenhong, Shi Chuang, et al. 30 m Resolution SRTM Quality Assessment in China[J]. Bulletin of Surveying and Mapping, 2016(9): 24-28 https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB201609007.htm
[24] Berardino P, Fornaro G, Lanari R, et al. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2 375-2 383 doi: 10.1109/TGRS.2002.803792
[25] 刘国祥. InSAR原理与应用[M]. 北京: 科学出版社, 2019: 215-217 Liu Guoxiang. Principles and Applications of InSAR[M]. Beijing: Science Press, 2019: 215-217
[26] 朱建军, 杨泽发, 李志伟. InSAR矿区地表三维形变监测与预计研究进SAR展[J]. 测绘学报, 2019, 48(2): 135-144 Zhu Jianjun, Yang Zefa, Li Zhiwei. Research Progress of 3D Surface Deformation Monitoring and Prediction in InSAR Mining Area[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(2): 135-144
[27] 中国民用航空局. MH/T 5027-2013机场岩土工程设计规范[S]. 北京: 中国民航出版社, 2013 General Administration of Civil Aviation of China. MH/T 5027-2013 Code for Geotechnical Engineering Design of Airport[S]. Beijing: China Civil Aviation Press, 2013
[28] 蒲川豪, 许强, 蒋亚楠, 等. 延安新区地面沉降分布及影响因素的时序InSAR监测分析[J]. 武汉大学学报·信息科学版, 2020, 45(11): 81-91 doi: 10.13203/j.whugis20190372 Pu Chuanhao, Xu Qiang, Jiang Yanan, et al. Analysis of Land Subsidence Distribution and Influencing Factors in Yan'an New District Based on Time Series InSAR[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 81-91 doi: 10.13203/j.whugis20190372