Realization and Comparison of Different Strategies Applied for GPS Terrestrial Reference Frame Modeling Nonlinear Station Motions
-
摘要:
国际地球参考框架的最新版本已将测站非线性变化纳入模型之中,然而目前最优的顾及测站非线性变化的地球参考框架建立方式仍有待深入研究。首先重新处理了全球分布的全球定位系统测站2004−2016年的观测数据,获取了自洽精确的基础数据;然后改正了13个CMONOC(crustal movement observation network of China)基准站的震后形变,分别建立了基于函数模型的FREQ2016以及顾及环境负载改正的GFZ2016和EOST2016地球参考框架;最后通过对比分析模型拟合度、速度场和周期性信号,探讨了目前最优的顾及测站非线性变化的地球参考框架建立方式。结果表明,FREQ2016的验后残差WRMS(weighted root mean square)平均值最小;FREQ2016测站季节性信号更为显著,尤其是半周年信号;三者的水平速度差异可以忽略(< 0.08 mm/a),个别测站垂向速度差异较大,最大可达1.3 mm/a,FREQ2016水平速度场的形式误差减小约10%。因此,目前基于函数模型的建立方式优于顾及环境负载改正的建立方式。
Abstract:ObjectivesLatest release of international terrestrial reference frame has been generated with an enhanced modeling of nonlinear station motions, while more investigations on the strategies applied for the terrestrial reference frame modeling nonlinear station motions still needed.
MethodsA global GPS (global positioning system) network has been reprocessed, using the latest GNSS (global navigation satellite system) data processing models and an integrated strategy, and then accurate and consistent input data are obtained; the post-seismic deformation models of 13 CMONOC (crustal movement observation network of China) stations are established and used as the input data, and FREQ2016 based on the function model, and GFZ2016 and EOST2016 considering the environmental loading correction are realized; these GPS terrestrial reference frames with different models are compared in terms of the goodness for fit, velocities and seasonal signals, and then the optimal model is explored.
ResultsThe results show that the weighted root mean square averages of the postfit residuals of FREQ2016 are smaller than those of GFZ2016 and of EOST2016; FREQ2016 shows more significant seasonal signals, especially for semi-annual signals; the horizontal velocity field differences of these three are almost negligible (< 0.08 mm/a), and the large vertical velocity differences, for some stations, reach 1.3 mm/a; the reduction of FREQ2016 horizontal velocity formal errors is about 10%.
ConclusionsThis paper suggests that the strategy based on the function model is better than that of considering the environmental loading correction.
-
经典平差模型和最小二乘估计理论[1]在大地测量等众多科学研究和工程领域中应用广泛,其中,高斯-马尔科夫模型(Gauss-Markov model, GMM)最为常用,而高斯-赫尔默特模型(GaussHelmert model, GHM)可视为经典平差模型的一般通用形式。在实际应用中,坐标转换、回归模型、数字地面模型和大地测量反演等平差模型的系数矩阵包含随机的观测误差,从而使得GMM扩展为随机系数矩阵的变量含误差(errors-invariables, EIV)模型[2]。文献[3]提出同时顾及观测向量和系数矩阵中随机误差的整体最小二乘(total least squares, TLS)估计算法。TLS的非线性特征导致其受制于计算机技术的发展,直至20世纪80年代,文献[4]将TLS引入数值分析领域并提出奇异值分解算法,TLS才开始广泛应用于各专业领域并取得丰富的研究成果。文献[2]中对TLS进行了改进和扩展;文献[5]从TLS的算法、统计特性和可靠性研究等方面综述了TLS方法的研究进展。当误差相关且精度不等时,采用加权整体最小二乘估计(weighted total least squares, WTLS)方法进行求解。文献[6]研究了基于高斯-牛顿迭代法的WTLS算法,该算法假设权矩阵为特殊情况,得到的解在形式上与最小二乘(least squares, LS)解相同;文献[7]研究了在任意权矩阵的一般情况下的WTLS算法;文献[8]研究了特殊结构下WTLS算法的迭代方法并将其应用于实际场景;文献[9-12]研究了附有等式和不等式约束情况下的WTLS算法;文献[13]研究了稳健WTLS算法。
通过对EIV模型的形式进行变换,文献[14]提出部分EIV(partial EIV, PEIV)模型,提高了系数矩阵仅含部分随机量情况下的计算效率。文献[15]对PEIV模型进行线性化,推导了PEIV模型的LS算法。文献[16-17]从模型的一般性出发,将EIV模型扩展至通用EIV模型,将经典平差的GHM中观测向量的系数矩阵和参数向量的系数矩阵由固定矩阵推广为随机矩阵,涵括随机系数矩阵的各类情况,同时推导了通用EIV模型在任意权矩阵情况下的一般性WTLS算法。
通用EIV模型的非线性使得该算法在估计量较多时计算量大。本文利用非线性平差原理,将通用EIV模型展开后的二阶项纳入平差方程的常数项,从而将其转化为GHM形式,推导出通用EIV模型的线性化整体最小二乘(linearized total least squares, LTLS)算法。相较于WTLS算法,LTLS算法提高了通用EIV模型的计算效率,当参数向量初始值与最优值相差较大时,提升了迭代收敛速度。
1 通用EIV平差模型及其WTLS估计
1.1 通用EIV平差模型
GHM的形式为:
$$ \mathit{\boldsymbol{A}}\left( {\mathit{\boldsymbol{y}} + {\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{y}}}} \right) + \mathit{\boldsymbol{BX}} + \mathit{\boldsymbol{w}} = \mathit{\boldsymbol{0}} $$ (1) 式中,y和vy分别为n×1维观测值向量和观测值改正数向量;X为u×1维参数向量;A为观测值向量对应的f×n维系数矩阵;B为参数向量对应的f×u维系数矩阵;w为f×1维常数向量;在经典平差函数模型的定义中,A和B均不含随机误差,为固定矩阵。
当参数向量的系数矩阵B含随机误差时,GHM(式(1))扩展为经典EIV模型。当观测值向量的系数矩阵A和参数向量的系数矩阵B均含随机误差时,GHM(式(1))扩展为通用EIV平差模型[16]:
$$ \left( {\mathit{\boldsymbol{A}} + {\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{A}}}} \right)\left( {\mathit{\boldsymbol{y}} + {\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{y}}}} \right) + \left( {\mathit{\boldsymbol{B}} + {\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{B}}}} \right)\mathit{\boldsymbol{X}} + \mathit{\boldsymbol{w}} = \mathit{\boldsymbol{0}} $$ (2) 式中,A和VA分别为观测值向量对应的f×n维系数矩阵及其改正数矩阵;B和VB分别为参数向量对应的f×u维系数矩阵及其改正数矩阵。由于A、B和y均为随机矩阵,则通用EIV的随机模型为:
$$ \mathit{\boldsymbol{L}} = \left[ {\begin{array}{*{20}{c}} {{\mathop{\rm vec}\nolimits} (\mathit{\boldsymbol{A}})}\\ {{\mathop{\rm vec}\nolimits} (\mathit{\boldsymbol{B}})}\\ \mathit{\boldsymbol{y}} \end{array}} \right],\mathit{\boldsymbol{v}} = \left[ {\begin{array}{*{20}{c}} {{\mathop{\rm vec}\nolimits} \left( {{\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{A}}}} \right)}\\ {{\mathop{\rm vec}\nolimits} \left( {{\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{B}}}} \right)}\\ {{\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{y}}}} \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} {{\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{A}}}}\\ {{\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{B}}}}\\ {{\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{y}}}} \end{array}} \right] $$ (3) $$ \mathit{\boldsymbol{D}}(\mathit{\boldsymbol{L}}) = \delta _0^2{\mathit{\boldsymbol{P}}^{ - 1}} = \delta _0^2\mathit{\boldsymbol{Q}} = \delta _0^2\left[ {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{Q}}_\mathit{\boldsymbol{A}}}}&{{\mathit{\boldsymbol{Q}}_{\mathit{\boldsymbol{AB}}}}}&{{\mathit{\boldsymbol{Q}}_{\mathit{\boldsymbol{Ay}}}}}\\ {{\mathit{\boldsymbol{Q}}_{\mathit{\boldsymbol{BA}}}}}&{{\mathit{\boldsymbol{Q}}_\mathit{\boldsymbol{B}}}}&{{\mathit{\boldsymbol{Q}}_{\mathit{\boldsymbol{By}}}}}\\ {{\mathit{\boldsymbol{Q}}_{\mathit{\boldsymbol{yA}}}}}&{{\mathit{\boldsymbol{Q}}_{\mathit{\boldsymbol{yB}}}}}&{{\mathit{\boldsymbol{Q}}_\mathit{\boldsymbol{y}}}} \end{array}} \right] $$ (4) 式中,vec(.)表示将矩阵按列向量化;L和v分别为观测数据的k×1维观测值向量及其改正数向量,包括A、B和y中所有观测值及其改正数,其中k=fn+fu+n; P、Q和D(L)分别为L的权矩阵、协因数矩阵和方差协方差矩阵;δ02为单位权方差。
1.2 WTLS估计
根据TLS准则,通用EIV平差模型的求解可转化为最优化估计问题[16]:
$$ \left\{ {\begin{array}{*{20}{l}} {\min {\mathit{\boldsymbol{v}}^{\rm{T}}}\mathit{\boldsymbol{Pv}}}\\ {s.t.{\rm{ }}\left( {\mathit{\boldsymbol{A}} + {\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{A}}}} \right)\left( {\mathit{\boldsymbol{y}} + {\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{y}}}} \right) + \left( {\mathit{\boldsymbol{B}} + {\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{B}}}} \right)\mathit{\boldsymbol{X}} + \mathit{\boldsymbol{w}} = \mathit{\boldsymbol{0}}} \end{array}} \right. $$ (5) 相应目标函数为:
$$ \begin{array}{*{20}{c}} {\mathit{\Phi }(\mathit{\boldsymbol{r}},\mathit{\boldsymbol{\lambda }},\mathit{\boldsymbol{X}}) = {\mathit{\boldsymbol{v}}^{\rm{T}}}\mathit{\boldsymbol{Pv}} + 2{\mathit{\boldsymbol{\lambda }}^{\rm{T}}}\left( {\mathit{\boldsymbol{Ay}} + \mathit{\boldsymbol{A}}{\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{y}}} + } \right.}\\ {\left. {{\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{A}}}\mathit{\boldsymbol{y}} + {\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{A}}}{\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{y}}} + \mathit{\boldsymbol{BX}} + {\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{B}}}\mathit{\boldsymbol{X}} + \mathit{\boldsymbol{w}}} \right)} \end{array} $$ (6) 将目标函数对估计量分别求偏导并令其等于0,得到非线性方程组:
$$ \frac{{\partial \mathit{\Phi }}}{{\partial \mathit{\boldsymbol{\hat X}}}} = 2\left( {{\mathit{\boldsymbol{B}}^{\rm{T}}}\mathit{\boldsymbol{\hat \lambda }} + \mathit{\boldsymbol{\hat V}}_\mathit{\boldsymbol{B}}^{\rm{T}}\mathit{\boldsymbol{\hat \lambda }}} \right) = \mathit{\boldsymbol{0}} $$ (7) $$ \frac{{\partial \mathit{\Phi }}}{{\partial \mathit{\boldsymbol{\hat v}}}} = 2\left( {\mathit{\boldsymbol{P\hat v}} + {{\mathit{\boldsymbol{\hat C}}}^{\rm{T}}}\mathit{\boldsymbol{\hat \lambda }}} \right) = \mathit{\boldsymbol{0}} $$ (8) $$ \frac{{\partial \mathit{\Phi }}}{{\partial \mathit{\boldsymbol{\hat \lambda }}}} = 2(\mathit{\boldsymbol{Ay}} + \mathit{\boldsymbol{B\hat X}} + \mathit{\boldsymbol{\hat C\hat v}} + \mathit{\boldsymbol{w}}) = \mathit{\boldsymbol{0}} $$ (9) 式中,$ {\boldsymbol{C}}=\left[{\boldsymbol{y}}^{\mathrm{T}} \otimes {\boldsymbol{I}}_{f} \boldsymbol{X}^{\mathrm{T}} \otimes {\boldsymbol{I}}_{f} A+\boldsymbol{V}_{{\boldsymbol{A}}}\right] ; \hat{{\boldsymbol{v}}}, \hat{\boldsymbol{X}} $分别为观测值向量和参数向量的估计值。
根据式(7)~式(9)可导出:
$$ \mathit{\boldsymbol{\hat v}} = - \mathit{\boldsymbol{Q}}{\mathit{\boldsymbol{\hat C}}^{\rm{T}}}\mathit{\boldsymbol{\hat Q}}_\mathit{\boldsymbol{C}}^{ - 1}(\mathit{\boldsymbol{Ay}} + \mathit{\boldsymbol{B\hat X}} + \mathit{\boldsymbol{w}}) $$ (10) $$ \begin{array}{*{20}{c}} {\mathit{\boldsymbol{\hat X}} = - {{\left[ {\left( {{\mathit{\boldsymbol{B}}^{\rm{T}}} + \mathit{\boldsymbol{\hat V}}_\mathit{\boldsymbol{B}}^{\rm{T}}} \right)\mathit{\boldsymbol{\hat Q}}_\mathit{\boldsymbol{C}}^{ - 1}\mathit{\boldsymbol{B}}} \right]}^{ - 1}}\left( {{\mathit{\boldsymbol{B}}^{\rm{T}}} + } \right.}\\ {\left. {\mathit{\boldsymbol{\hat V}}_\mathit{\boldsymbol{B}}^{\rm{T}}} \right)\mathit{\boldsymbol{\hat Q}}_\mathit{\boldsymbol{C}}^{ - 1}(\mathit{\boldsymbol{Ay}} + \mathit{\boldsymbol{w}})} \end{array} $$ (11) 式中,$ \hat{\boldsymbol{Q}}_{C}=\hat{\boldsymbol{C}} \boldsymbol{Q} \hat{\boldsymbol{C}}^{\mathrm{T}} $。
以式(2)的LS解作为初始值,根据式(10)和式(11)进行迭代计算可得通用EIV模型的WTLS最优解。
2 通用EIV模型的线性化估计算法
通用EIV模型是非线性模型,观测值矩阵和系数矩阵均为随机量,WTLS算法的计算量随着待估量个数增多将迅速增加。将式(2)展开,利用非线性函数平差原理[18]将二阶项作为模型误差纳入方程的常数项,从而将通用EIV模型转化为线性的GHM,推导出通用EIV模型的LTLS算法。
令X=X0+x,将式(2)展开得:
$$ \begin{array}{c} \left( {{\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{A}}}\mathit{\boldsymbol{y}} + {\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{B}}}{\mathit{\boldsymbol{X}}_0} + \mathit{\boldsymbol{A}}{\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{y}}}} \right) + \mathit{\boldsymbol{Bx}} + (\mathit{\boldsymbol{w}} + \mathit{\boldsymbol{Ay}} + \\ \left. {\mathit{\boldsymbol{B}}{\mathit{\boldsymbol{X}}_0} + {\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{A}}}{\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{y}}} + {\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{B}}}\mathit{\boldsymbol{x}}} \right) = \mathit{\boldsymbol{0}} \end{array} $$ (12) 式(12)可表示为:
$$ \begin{array}{*{20}{c}} {\left[ {\left( {{\mathit{\boldsymbol{y}}^{\rm{T}}} \otimes {\mathit{\boldsymbol{I}}_\mathit{\boldsymbol{f}}}} \right){\mathop{\rm vec}\nolimits} \left( {{\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{A}}}} \right) + \left( {\mathit{\boldsymbol{X}}_0^{\rm{T}} \otimes {\mathit{\boldsymbol{I}}_\mathit{\boldsymbol{f}}}} \right){\mathop{\rm vec}\nolimits} \left( {{\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{B}}}} \right) + \mathit{\boldsymbol{A}}{\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{y}}}} \right] + }\\ {\mathit{\boldsymbol{Bx}} + \left( {\mathit{\boldsymbol{w}} + \mathit{\boldsymbol{Ay}} + \mathit{\boldsymbol{B}}{\mathit{\boldsymbol{X}}_0} + {\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{A}}}{\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{y}}} + {\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{B}}}\mathit{\boldsymbol{x}}} \right) = \mathit{\boldsymbol{0}}} \end{array} $$ (13) 则通用EIV模型的线性化形式为:
$$ {\mathit{\boldsymbol{A}}_\mathit{\boldsymbol{l}}}{\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{l}}} + \mathit{\boldsymbol{Bx}} + {\mathit{\boldsymbol{w}}_\mathit{\boldsymbol{l}}} = \mathit{\boldsymbol{0}} $$ (14) 式中,$ {\boldsymbol{A}}_{{\boldsymbol{l}}}=\left[\begin{array}{llll} {\boldsymbol{y}}^{\mathrm{T}} \otimes {\boldsymbol{I_{f}}} & \boldsymbol{X}_{0}^{\mathrm{T}} & \otimes {\boldsymbol{I_{f}}} & {\boldsymbol{A}} \end{array}\right] ; \ {\boldsymbol{v_{l}}}= \left[\begin{array}{c} \operatorname{vec}\left(\boldsymbol{V}_{{\boldsymbol{A}}}\right) \\ \operatorname{vec}\left(\boldsymbol{V}_{{\boldsymbol{B}}}\right) \\ \boldsymbol{v}_{{\boldsymbol{y}}} \end{array}\right] ; \boldsymbol{w}_{{\boldsymbol{l}}}=\boldsymbol{w}+\boldsymbol{Ay} + {\boldsymbol{B}} \boldsymbol{X}_{0}+\boldsymbol{V}_{{\boldsymbol{A}}} \boldsymbol{v}_{{\boldsymbol{y}}}+\boldsymbol{V}_{{\boldsymbol{B}}} {\boldsymbol{x}}$为常数项,即将式(2)按泰勒展开略去的二阶项VAvy+VBx作为模型误差纳入常数项。
由式(14)可知,线性化后的通用EIV模型与GHM形式一致,可使用最小二乘法得到观测值向量和参数向量:
$$ \mathit{\boldsymbol{\hat x}} = - \mathit{\boldsymbol{\hat N}}_{\mathit{\boldsymbol{bb}}}^{ - 1}{\mathit{\boldsymbol{B}}^{\rm{T}}}\mathit{\boldsymbol{\hat N}}_{\mathit{\boldsymbol{aa}}}^{ - 1}{\mathit{\boldsymbol{w}}_\mathit{\boldsymbol{l}}} $$ (15) $$ {{\mathit{\boldsymbol{\hat v}}}_\mathit{\boldsymbol{l}}} = - \mathit{\boldsymbol{Q}}{{\mathit{\boldsymbol{\hat A}}}_\mathit{\boldsymbol{l}}}\mathit{\boldsymbol{\hat N}}_{\mathit{\boldsymbol{aa}}}^{ - 1}\left( {\mathit{\boldsymbol{B\hat x}} + {\mathit{\boldsymbol{w}}_\mathit{\boldsymbol{l}}}} \right) $$ (16) 式中,$ \boldsymbol{N}_{{\boldsymbol{a a}}}=\boldsymbol{A}_{{\boldsymbol{l}}} \boldsymbol{Q} \boldsymbol{A}_{{\boldsymbol{l}}}^{\mathrm{T}} ; \boldsymbol{N}_{{\boldsymbol{b b}}}= {\boldsymbol{B}}^{\mathrm{T}} \boldsymbol{N}_{{\boldsymbol{a a}}}^{-1} {\boldsymbol{B}} $; Q为观测值向量的协因数矩阵。
通用EIV模型的LTLS算法步骤如下:
1)将实际模型表示为式(2),将观测数据代入得到A、B和y矩阵,并给出观测值数据的协因数阵Q,包括观测值向量Qy、观测值向量系数矩阵QA、参数向量系数矩阵QB。
2)计算通用EIV模型的LS解作为初始参数解:$ \hat{\boldsymbol{X}}^{0}=-\left({\boldsymbol{B}}^{\mathrm{T}}\left({\boldsymbol{A }}\boldsymbol{Q}_{{\boldsymbol{y}}} {\boldsymbol{A}}^{\mathrm{T}}\right)^{-1} {\boldsymbol{B}}\right)^{-1} {\boldsymbol{B}}^{\mathrm{T}}\left({\boldsymbol{A}} \boldsymbol{Q}_{{\boldsymbol{y}}} {\boldsymbol{A}}^{\mathrm{T}}\right)^{-1} · ({\boldsymbol{A y}}+{\boldsymbol{w}})$, 观测值向量改正数初始值取0。
3)根据式(15)和式(16)进行迭代计算,每次迭代将上一次估计值作为初始值代入新的迭代过程,直至前后两次估计值之差小于设定阈值。
GHM按泰勒级数展开仅包含常数项、一阶项(二阶及以上项全部为零),将二阶项纳入线性化后的常数项,该方法极大地减弱了线性化引起的模型误差。因此,在同样以LS解作为初值的情况下,GHM线性化的LTLS解与WTLS解的收敛性一致。此外,根据文献[19]中EIV模型LS解偏差的研究结果,在当前测量技术手段和观测精度条件下,以有偏的LS解作为初值,能够保证TLS迭代计算收敛,除非出现极特殊情况导致LS初始解严重偏离最优值。
参考GHM,式(2)的LTLS算法估计结果的精度计算式为:
$$ \left\{ {\begin{array}{*{20}{l}} {\hat \delta _0^2 = \mathit{\boldsymbol{v}}_\mathit{\boldsymbol{l}}^{\rm{T}}\mathit{\boldsymbol{P}}{\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{l}}}/\mathit{r}}\\ {\mathit{\boldsymbol{Q}}(\mathit{\boldsymbol{\hat x}}) = {{\left( {{\mathit{\boldsymbol{B}}^{\rm{T}}}{{\left( {{\mathit{\boldsymbol{A}}_\mathit{\boldsymbol{l}}}\mathit{\boldsymbol{QA}}_\mathit{\boldsymbol{l}}^{\rm{T}}} \right)}^{ - 1}}\mathit{\boldsymbol{B}}} \right)}^{ - 1}}}\\ {\mathit{\boldsymbol{Q}}(\mathit{\boldsymbol{\hat L}}) = \mathit{\boldsymbol{Q}} - \mathit{\boldsymbol{QA}}_\mathit{\boldsymbol{l}}^{\rm{T}}\left( {\mathit{\boldsymbol{N}}_\mathit{\boldsymbol{A}}^{ - 1}\left( {\mathit{\boldsymbol{I}} - \mathit{\boldsymbol{B}}{\mathit{\boldsymbol{Q}}_{\mathit{\boldsymbol{\hat x}}}}{\mathit{\boldsymbol{B}}^{\rm{T}}}\mathit{\boldsymbol{N}}_\mathit{\boldsymbol{A}}^{ - 1}} \right){\mathit{\boldsymbol{A}}_\mathit{\boldsymbol{l}}}\mathit{\boldsymbol{Q}}} \right)}\\ {\mathit{\boldsymbol{D}}(\mathit{\boldsymbol{\hat x}}) = \hat \delta _0^2\mathit{\boldsymbol{Q}}(\mathit{\boldsymbol{\hat x}})}\\ {\mathit{\boldsymbol{D}}(\mathit{\boldsymbol{\hat L}}) = \hat \delta _0^2\mathit{\boldsymbol{Q}}(\mathit{\boldsymbol{\hat L}})} \end{array}} \right. $$ (17) 式中,多余观测数r=n-t; n为观测值个数;t为必要观测值个数;r与GHM的多余观测数相同;$ \boldsymbol{N}_{{\boldsymbol{A}}}=\boldsymbol{A}_{{\boldsymbol{l}}} \boldsymbol{P}^{-1} \boldsymbol{A}_{{\boldsymbol{l}}}^{\mathrm{T}} $。
3 LTLS算法实例分析
按照LTLS算法步骤设计实验,比较LTLS算法与WTLS算法的计算结果,验证LTLS算法的正确性、高效性和可行性。实验1设计模拟数据,比较分析单组实验结果和1 000组实验统计结果,验证LTLS算法的正确性;实验2在待估计量数目取不同量级时,比较两种算法的计算时间,验证LTLS算法的高效性;实验3通过实例验证LTLS算法的可行性。
3.1 实验1
在通用EIV模型(式(2))中,设置参数真值X=[5 10]T,系数矩阵A和B中随机量的中误差分别设为0.01和0.02,观测向量y的中误差设为0.03。A、B、y和常数向量w的模拟数据如下:
$$ \mathit{\boldsymbol{A}} = \left[ {\begin{array}{*{20}{c}} {12.469}&{11.096}&{15.872}&{11.725}\\ {8.883}&{10.291}&{2.929}&{3.666}\\ {12.321}&{1.109}&{6.392}&{15.809}\\ {3.551}&{12.104}&{3.867}&{1.257} \end{array}} \right], $$ $$ \mathit{\boldsymbol{B}} = \left[ {\begin{array}{*{20}{l}} {10.410}&{17.544}\\ {18.033}&{15.171}\\ {18.631}&{15.855}\\ {15.671}&{11.878} \end{array}} \right], $$ $$ \mathit{\boldsymbol{y}} = \left[ {\begin{array}{*{20}{l}} {27.543}\\ {20.727}\\ {20.839}\\ {25.033} \end{array}} \right],\mathit{\boldsymbol{w}} = \left[ {\begin{array}{*{20}{c}} { - 1425.323}\\ { - 852.619}\\ { - 1142.913}\\ { - 658.407} \end{array}} \right]。 $$ 采用LTLS算法和WTLS算法的估计结果如表 1所示,LTLS参数解与WTLS参数解完全相等,验证了LTLS算法的正确性。
表 1 参数解及其方差估计值Table 1. Parameter Values and Mean Square Deviations算法 参数解 中误差 $ \hat {\boldsymbol{X}} _1 $ $ \hat {\boldsymbol{X}} _2 $ $ σ _{\hat{\boldsymbol{X}}_1} $ $ σ_ {\hat{\boldsymbol{X}}_2} $ LTLS算法 5.012 551 9.994 964 0.039 9 0.051 9 WTLS算法 5.012 551 9.994 964 0.039 9 0.051 9 为了进一步验证LTLS算法的正确性,首先采用模拟的1 000组数据计算LTLS和WTLS参数解的均值$ {\rm{avg}} (\hat {\boldsymbol{X}} _1) 和 {\rm{avg}} (\hat {\boldsymbol{X}} _2) $,并将参数解均值代入式(17),求得LTLS参数解的协因数阵估值$ {\boldsymbol{Q}}(\hat {\boldsymbol{X}} )$,然后利用参数真值求得精确的参数协因数阵$ \overline{\boldsymbol{Q}}(\hat{\boldsymbol{X}})={\boldsymbol{E}}_{{\boldsymbol{X}}}^{\mathrm{T}} \boldsymbol{E}_{{\boldsymbol{X}}} /(m-n) , {\boldsymbol{E}}_{{\boldsymbol{X}}}=\left[\begin{array}{ll} \hat{{\boldsymbol{X}}}_{1}^{(j)}-5 & \hat{{\boldsymbol{X}}}_{2}^{(j)}-10 \end{array}\right] $,计算结果见表 2。1 000组数据的LTLS参数解和WTLS参数解与参数真值偏差的统计分析见图 1和图 2。
表 2 1000组实验的参数解均值和协因数阵Table 2. Average Parameter Values and Co⁃variance Matrix in 1 000 Experiments算法 参数解均值 协因数阵 $ {\rm{avg}} ( \hat{\boldsymbol{X}}_1) $ $ {\rm{avg}} ( \hat{\boldsymbol{X}}_2) $ $ {\boldsymbol{Q }}( \hat{\boldsymbol{X}} ) $ $ \bar{ \boldsymbol{Q }}( \hat{\boldsymbol{X}} ) $ LTLS算法 5.009 427 9.998 257 0.004 3 −0.005 1 0.004 2 −0.004 9 −0.005 1 0.007 3 −0.004 9 0.007 2 WTLS算法 5.009 427 9.998 257 0.004 3 −0.005 1 0.004 2 −0.004 9 −0.005 1 0.007 3 −0.004 9 0.007 2 由表 2、图 1和图 2可以看出,LTLS算法与WTLS算法的统计结果完全一致,说明在每次实验中两种算法所求参数解均一致,验证了LTLS算法的正确性。同时两种计算协因数阵的方法结果非常相近,验证了参数协因数阵一阶近似估计公式(17)的有效性[17]。
3.2 实验2
为分析LTLS算法的计算效率,设计通用EIV模型中待估计量个数在不同的数量级情况,采用LTLS算法和WTLS算法计算100组模拟数据的平均迭代次数N、平均解算时间t和减少比例(LTLS算法较WTLS算法减少的平均解算时间与WTLS算法平均解算时间之比),结果见表 3。
表 3 LTLS算法和WTLS算法计算效率的比较Table 3. Comparison of Computational Efficiency Between LTLS Algorithm and WTLS Algorithm待估量数量 NLTLS NWTLS tLTLS tWTLS 减少比例/% 10 5.18 4.5 0.224 ms 0.191 ms − 100 5.04 6.36 0.681 ms 0.724 ms 5.9 1 000 5 6.75 0.033 s 0.044 s 25.0 10 000 5 7.5 2.681 s 3.909 s 31.4 从表 3可以看出,两种算法每次迭代的平均时间基本一致;当模型估计量数量较少时,两种算法的效率基本相当,随着估计量的数量级逐渐增大,LTLS算法的效率高于WTLS算法。原因在于GHM按泰勒级数展开后,仅包含常数项、一阶项(二阶及以上项全部为零),LTLS算法将二阶项纳入常数项,减小了线性化引起的模型误差,迭代计算收敛更快,迭代次数减少,使得计算效率提高。
3.3 实验3
本文采用的摄影测量实例示意图如图 3所示,由3个地面摄像机S1、S2和S3拍摄两个目标点P1和P2组成,相机主距f=100 mm,距离l1、l2、l3、l4、l5、l6、y1、y2的观测值和中误差见表 4。
表 4 距离观测值及其中误差Table 4. Distance Observations and Standard Deviations统计项 l1/mm l2/mm l3/mm l4/mm l5/mm l6/mm y1/m y2/m 观测值 14.1 16.6 6.1 7.1 22.1 26.3 10.0 8.0 中误差 0.10 0.10 0.10 0.10 0.10 0.10 0.05 0.05 根据图 3可得到误差方程:
$$ \left\{\begin{array}{l} l_{1} x_{2}-f x_{1}=0 \\ l_{2} x_{4}-f x_{3}=0 \\ l_{3} x_{2}+f y_{1}+f x_{1}=0 \\ l_{4} x_{4}+f y_{1}+f x_{3}=0 \\ l_{5} x_{2}-f y_{1}-f y_{2}+f x_{1}=0 \\ l_{6} x_{4}-f y_{1}-f y_{2}+f x_{3}=0 \end{array}\right. $$ (18) 构建通用EIV模型来估计点P1和点P2的坐标,由误差方程可得:
$$ \begin{array}{l} \mathit{\boldsymbol{A}} = \left[ {\begin{array}{*{20}{c}} 0&0\\ 0&0\\ { - f}&0\\ { - f}&0\\ { - f}&{ - f}\\ { - f}&{ - f} \end{array}} \right],\mathit{\boldsymbol{B}} = \left[ {\begin{array}{*{20}{c}} { - f}&{{l_1}}&0&0\\ 0&0&{ - f}&{{l_2}}\\ f&{{l_3}}&0&0\\ 0&0&f&{{l_4}}\\ f&{{l_5}}&0&0\\ 0&0&f&{{l_6}} \end{array}} \right],\\ \mathit{\boldsymbol{y}} = \left[ {\begin{array}{*{20}{l}} {{y_1}}\\ {{y_2}} \end{array}} \right],\mathit{\boldsymbol{x}} = \left[ {\begin{array}{*{20}{l}} {{x_1}}\\ {{x_2}}\\ {{x_3}}\\ {{x_4}} \end{array}} \right],\mathit{\boldsymbol{w}} = \left[ {\begin{array}{*{20}{l}} 0\\ 0\\ 0\\ 0\\ 0\\ 0 \end{array}} \right] \end{array} $$ (19) 由式(19)可知矩阵A不含有随机误差,则该矩阵的改正数矩阵为零矩阵。采用LTLS算法和WTLS算法解算,设置阈值为1×10-8,结果见表 5和表 6。两种方法所得坐标估值和距离观测值估值完全一致,该实例表示为通用EIV模型时系数矩阵中待估计量较少,所以两个算法收敛速度相差不大。
表 5 点P1和点P2的坐标估值/mTable 5. Coordinate Estimates of P1 and P2 /m算法 坐标估值 $ \hat x_1 $ $ \hat x_2 $ $ \hat x_3 $ $ \hat x_4 $ LTLS算法 6.995 056 5 49.715 632 6.981 465 5 41.968 315 9 WTLS算法 6.995 056 5 49.715 632 6.981 465 5 41.968 315 9 表 6 距离观测值估值Table 6. Estimation of Distance Observations算法 $ \hat l_1 $/mm $ \hat l_2 $/mm $ \hat l_3 $/mm $ \hat l_4 $/mm $ \hat l_5 $5/mm $ \hat l_6 $/mm $ \hat y_1 $/m $ \hat y_2 $/m LTLS算法 14.070 1 16.635 1 6.032 4 7.178 4 22.137 7 26.256 7 9.994 1 8.006 8 WTLS算法 14.070 1 16.635 1 6.032 4 7.178 4 22.137 7 26.256 7 9.994 1 8.006 8 4 结语
本文将通用EIV函数模型展开后的二阶项纳入模型的常数项,将通用EIV模型表示为线性形式的GHM,推导出通用EIV模型的线性化整体最小二乘算法和近似精度估计公式。实验结果表明,通用EIV模型的LTLS算法与WTLS算法结果一致,验证了该算法的正确性。此外,LTLS算法估计精度公式和WTLS估计精度公式均为一阶近似精度,因此两种算法参数的估计精度相同。当通用EIV模型的待估量数量较多时,LTLS算法比WTLS计算效率更高,在处理海量数据时更具有优势。
-
表 1 ITRF2014、DTRF2014和JTRF2014总结
Table 1 Summary on ITRF2014, DTRF2014 and JTRF2014
版本 ITRF2014 DTRF2014 JTRF2014 发布机构 法国国家地理研究所 德国大地测量研究所 美国喷气推进实验室 软件 CATREF DOGS-CS CATREF+Kalman 组合算法 参数层面 法方程层面 参数层面 发布的主要产品 测站坐标(J2010.0)+速度(J2010.0)+PSD模型+周年信号+EOPs 测站坐标(J2010.0)+速度(J2010.0)+非潮汐大气负载和水文负载改正+EOPs 测站坐标(每周)+EOPs 表 2 验后残差WRMS平均值/mm
Table 2 WRMS Averages of Postfit Residuals/mm
分类 E N U FREQ2016 2.42 2.70 6.24 GFZ2016 2.58 2.87 6.28 EOST2016 2.54 2.84 6.29 表 3 FREQ2016、GFZ2016和EOST2016与ITRF2014之间的Helmert转换参数(J2010.0)及其速率
Table 3 Helmert Transformation Parameters at Epoch J2010.0 and Their Rates from FREQ2016, GFZ2016 and EOST2016 to ITRF2014
分类 FREQ2016 GFZ2016 EOST2016 $ {T}_{x}/\mathrm{m}\mathrm{m} $ $ 0\pm 0.2 $ $ 0\pm 0.2 $ $ 0\pm 0.2 $ $ {\dot{T}}_{x}/(\mathrm{m}\mathrm{m}\cdot {\mathrm{a}}^{-1}) $ $ 0\pm 0.2 $ $ 0\pm 0.2 $ $ 0\pm 0.2 $ $ {T}_{y}/\mathrm{m}\mathrm{m} $ $ 0\pm 0.2 $ $ 0\pm 0.2 $ $ 0\pm 0.2 $ $ {\dot{T}}_{y}/(\mathrm{m}\mathrm{m}\cdot {\mathrm{a}}^{-1}) $ $ 0\pm 0.2 $ $ 0\pm 0.2 $ $ 0\pm 0.2 $ $ Tz/\mathrm{m}\mathrm{m} $ $ 0\pm 0.2 $ $ 0\pm 0.2 $ $ 0\pm 0.2 $ $ \dot{T}z/(\mathrm{m}\mathrm{m}\cdot {\mathrm{a}}^{-1}) $ $ 0\pm 0.2 $ $ 0\pm 0.2 $ $ 0\pm 0.2 $ $ D/{10}^{-9} $ $ 0\pm 0.03 $ $ 0\pm 0.03 $ $ 0\pm 0.03 $ $ \dot{D}/({10}^{-9}\cdot {\mathrm{a}}^{-1}) $ $ 0\pm 0.03 $ $ 0\pm 0.03 $ $ 0\pm 0.03 $ $ {R}_{x}/\mathrm{m}\mathrm{a}\mathrm{s} $ $ 0\pm 0.007 $ $ 0\pm 0.006 $ $ 0\pm 0.007 $ $ {\dot{R}}_{x}/(\mathrm{m}\mathrm{a}\mathrm{s}\cdot {\mathrm{a}}^{-1}) $ $ 0\pm 0.007 $ $ 0\pm 0.006 $ $ 0\pm 0.007 $ $ {R}_{y}/\mathrm{m}\mathrm{a}\mathrm{s} $ $ 0\pm 0.008 $ $ 0\pm 0.007 $ $ 0\pm 0.007 $ $ {\dot{R}}_{y}/(\mathrm{m}\mathrm{a}\mathrm{s}\cdot {\mathrm{a}}^{-1}) $ $ 0\pm 0.008 $ $ 0\pm 0.007 $ $ 0\pm 0.007 $ $ {R}_{z}/\mathrm{m}\mathrm{a}\mathrm{s} $ $ 0\pm 0.008 $ $ 0\pm 0.007 $ $ 0\pm 0.007 $ $ {\dot{R}}_{z}/(\mathrm{m}\mathrm{a}\mathrm{s}\cdot {\mathrm{a}}^{-1}) $ $ 0\pm 0.008 $ $ 0\pm 0.007 $ $ 0\pm 0.007 $ -
[1] 刘经南, 魏娜, 施闯. 国际地球参考框架(ITRF)的研究现状及展望[J]. 自然杂志, 2013, 35(4): 243-250. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201304004.htm Liu Jingnan, Wei Na, Shi Chuang. Status and Prospects of the International Terrestrial Reference Frame(ITRF)[J]. Chinese Journal of Nature, 2013, 35(4): 243-250. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201304004.htm
[2] Petit G, Luzum B. IERS Conventions (2010)[EB/OL]. (2010-10-15)[2019-04-01]. https://www.iers.org/IERS/EN/Publications/TechnicalNotes/tn36.html.
[3] 姜卫平, 马一方, 邓连生, 等. 毫米级地球参考框架的建立方法与展望[J]. 测绘地理信息, 2016, 41(4): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201604001.htm Jiang Weiping, Ma Yifang, Deng Liansheng, et al. Establishment of mm-Level Terrestrial Reference Frame and Its Prospect[J]. Journal of Geomatics, 2016, 41(4): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201604001.htm
[4] 姜卫平, 王锴华, 李昭, 等. GNSS坐标时间序列分析理论与方法及展望[J]. 武汉大学学报(信息科学版), 2018, 43(12): 2112-2123. doi: 10.13203/j.whugis20180333 Jiang Weiping, Wang Kaihua, Li Zhao, et al. Prospect and Theory of GNSS Coordinate Time Series Analysis[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2112-2123. doi: 10.13203/j.whugis20180333
[5] Collilieux X, Altamimi Z, Ray J, et al. Effect of the Satellite Laser Ranging Network Distribution on Geocenter Motion Estimation[J]. Journal of Geophysical Research: Solid Earth, 2009, 114(B4): B04402.
[6] 魏娜, 施闯, 刘经南. 地表负载及GPS测站分布对参考框架转换的影响分析[J]. 地球物理学报, 2016, 59(2): 484-493. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201602009.htm Wei Na, Shi Chuang, Liu Jingnan. Effects of Surface Loading and Heterogeneous GPS Network on Helmert Transformation[J]. Chinese Journal of Geophysics, 2016, 59(2): 484-493. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201602009.htm
[7] 马一方, 周晓慧. 卫星天线相位中心改正模型对参考框架转换中尺度参数的影响分析[J]. 大地测量与地球动力学, 2021, 41(1): 39-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB202101008.htm Ma Yifang, Zhou Xiaohui. Analysis of Impact of the Satellite Antenna Phase Center Correction Model on Scale Parameters of Helmert Transformation[J]. Journal of Geodesy and Geodynamics, 2021, 41(1): 39-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB202101008.htm
[8] 邓连生. GPS坐标时间序列中未模型化误差和环境负载的影响研究[D]. 武汉: 武汉大学, 2016. Deng Liansheng. Research on the Effects of Unmodeled Errors and Environmental Loading on GPS Coordinate Time Series[D]. Wuhan: Wuhan University, 2016.
[9] Collilieux X, Altamimi Z, Coulot D, et al. Impact of Loading Effects on Determination of the International Terrestrial Reference Frame[J]. Advances in Space Research, 2010, 45(1): 144-154. doi: 10.1016/j.asr.2009.08.024
[10] Dam T, Böhm J. Loading Effects and Reference Frames[M]//Encyclopedia of Geodesy. Cham: Springer, 2016.
[11] Altamimi Z, Collilieux X, Metivier L. Preliminary Analysis in Preparation for the ITRF2013[C]//EGU General Assembly Conference, Vienna, The Republic of Austria, 2013.
[12] Altamimi Z, Rebischung P, Métivier L, et al. ITRF2014: A New Release of the International Terrestrial Reference Frame Modeling Nonlinear Station Motions[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(8): 6109-6131. doi: 10.1002/2016JB013098
[13] Seitz M, Angermann D, Bloßfeld M. ITRS 2014 Realization of DGFI[C]//EGU General Assembly Conference, Vienna, The Republic of Austria, 2015.
[14] Wu X P, Abbondanza C, Altamimi Z, et al. KALREF: A Kalman Filter and Time Series Approach to the International Terrestrial Reference Frame Realization[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(5): 3775-3802. doi: 10.1002/2014JB011622
[15] Soja B, Gross R S, Abbondanza C, et al. On the Long-Term Stability of Terrestrial Reference Frame Solutions Based on Kalman Filtering[J]. Journal of Geodesy, 2018, 92(9): 1063-1077. doi: 10.1007/s00190-018-1160-0
[16] Abbondanza C, Chin T M, Gross R S, et al. A Sequential Estimation Approach to Terrestrial Reference Frame Determination[J]. Advances in Space Research, 2020, 65(4): 1235-1249. doi: 10.1016/j.asr.2019.11.016
[17] Abbondanza C, Chin T M, Gross R S, et al. JTRF2014, the JPL Kalman Filter and Smoother Realization of the International Terrestrial Reference System[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(10): 8474-8510. doi: 10.1002/2017JB014360
[18] Bloßfeld M, Seitz M, Angermann D. Non-linear Station Motions in Epoch and Multi-year Reference Frames[J]. Journal of Geodesy, 2014, 88(1): 45-63. doi: 10.1007/s00190-013-0668-6
[19] Angermann D, Blofeld M, Seitz M, et al. Comparison of Latest ITRS Realizations: ITRF2014, DTRF2014 and JTRF2014[EB/OL]. [2020-03-20]. https://www.iers.org/SharedDocs/Publikationen/EN/IERS/Publications/tn/TechnNote40/tn40_004.pdf?_blob=publicationFile&v=3.
[20] Dach R, Susnik A, Maier A, et al. Evaluation of ITRF2014 Solutions[C]//AGU Fall Meeting, San Francisco, USA, 2016.
[21] Bennett R A. Instantaneous Deformation from Continuous GPS: Contributions from Quasi-Periodic Loads[J]. Geophysical Journal International, 2008, 174(3): 1052-1064. doi: 10.1111/j.1365-246X.2008.03846.x
[22] Davis J L, Wernicke B P, Tamisiea M E. On Seasonal Signals in Geodetic Time Series[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B1): 1403.
[23] Chen Q, Dam T, Sneeuw N, et al. Singular Spectrum Analysis for Modeling Seasonal Signals from GPS Time Series[J]. Journal of Geodynamics, 2013, 72: 25-35. doi: 10.1016/j.jog.2013.05.005
[24] Wang X M, Cheng Y Y, Wu S Q, et al. An Enhanced Singular Spectrum Analysis Method for Constructing Nonsecular Model of GPS Site Movement[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(3): 2193-2211. doi: 10.1002/2015JB012573
[25] 戴海亮, 孙付平, 姜卫平, 等. 小波多尺度分解和奇异谱分析在GNSS站坐标时间序列分析中的应用[J]. 武汉大学学报(信息科学版), 2021, 46(3): 371-380. doi: 10.13203/j.whugis20190107 Dai Hailiang, Sun Fuping, Jiang Weiping, et al. Application of Wavelet Decomposition and Singular Spectrum Analysis to GNSS Station Coordinate Time Series[J]. Geomatics and Information Science of Wuhan University, 2021, 46(3): 371-380. doi: 10.13203/j.whugis20190107
[26] Rebischung P, Altamimi Z, Springer T. A Collinearity Diagnosis of the GNSS Geocenter Determination[J]. Journal of Geodesy, 2014, 88(1): 65-85.
[27] Rebischung P, Altamimi Z, Ray J, et al. The IGS Contribution to ITRF2014[J]. Journal of Geodesy, 2016, 90(7): 611-630.
[28] Chen H, Jiang W P, Ge M R, et al. An Enhanced Strategy for GNSS Data Processing of Massive Networks[J]. Journal of Geodesy, 2014, 88(9): 857-867.
[29] Altamimi Z, Collilieux X, Legrand J, et al. ITRF2005: A New Release of the International Terrestrial Reference Frame Based on Time Series of Station Positions and Earth Orientation Parameters[J]. Journal of Geophysical Research, 2007, 112(B9): B09401.
[30] Altamimi Z, Collilieux X, Métivier L. ITRF2008: An Improved Solution of the International Terrestrial Reference Frame[J]. Journal of Geodesy, 2011, 85(8): 457-473.
[31] Dill R, Dobslaw H. Numerical Simulations of Global-Scale High-Resolution Hydrological Crustal Deformations[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(9): 5008-5017.
[32] Petrov L. Study of the Atmospheric Pressure Loading Signal in Very Long Baseline Interferometry Observations[J]. Journal of Geophysical Research, 2004, 109(B3): B03405.
-
期刊类型引用(6)
1. 杨根新,王友昆,谢正明. 基于广义EIV模型的矿区高程异常的无缝推估算法. 工程勘察. 2023(08): 46-51 . 百度学术
2. Jianjun ZHU,Leyang WANG,Jun HU,Bofeng LI,Haiqiang FU,Yibin YAO. Recent Advances in the Geodesy Data Processing. Journal of Geodesy and Geoinformation Science. 2023(03): 33-45 . 必应学术
3. 翁烨,陈丽,王岩. 线性化通用EIV平差模型的正则化解法. 勘察科学技术. 2023(05): 1-5 . 百度学术
4. 戴中东,孟良,高永攀,项伟. 加权整体最小二乘坐标匹配算法在机场道面测量中的应用. 测绘地理信息. 2022(02): 61-66 . 百度学术
5. 翁烨,邵德盛,甘淑. 线性化通用EIV平差模型的岭估计解法. 全球定位系统. 2022(02): 82-89 . 百度学术
6. 翁烨,邵德盛. 病态加权总体最小二乘的广义岭估计解法. 全球定位系统. 2021(06): 84-89 . 百度学术
其他类型引用(2)