顾及方向关系的农村居民地聚类方法

吕峥, 孙群, 赵国成, 陆川伟, 胡健健

吕峥, 孙群, 赵国成, 陆川伟, 胡健健. 顾及方向关系的农村居民地聚类方法[J]. 武汉大学学报 ( 信息科学版), 2023, 48(4): 631-638. DOI: 10.13203/j.whugis20200546
引用本文: 吕峥, 孙群, 赵国成, 陆川伟, 胡健健. 顾及方向关系的农村居民地聚类方法[J]. 武汉大学学报 ( 信息科学版), 2023, 48(4): 631-638. DOI: 10.13203/j.whugis20200546
LÜ Zheng, SUN Qun, ZHAO Guocheng, LU Chuanwei, HU Jianjian. A Clustering Method of Rural Settlement Considering Direction Relation[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 631-638. DOI: 10.13203/j.whugis20200546
Citation: LÜ Zheng, SUN Qun, ZHAO Guocheng, LU Chuanwei, HU Jianjian. A Clustering Method of Rural Settlement Considering Direction Relation[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 631-638. DOI: 10.13203/j.whugis20200546

顾及方向关系的农村居民地聚类方法

基金项目: 

国家自然科学基金 41571399

国家自然科学基金 4177148

国家自然科学基金 41901397

河南省中原学者项目 202101510001

详细信息
    作者简介:

    吕峥,博士生,主要从事多源矢量数据融合及制图综合研究。lvzheng_xd@163.com

    通讯作者:

    孙群,博士,教授。13503712102@163.com

  • 中图分类号: P208

A Clustering Method of Rural Settlement Considering Direction Relation

  • 摘要: 农村居民地空间分布具有独特的规律性和复杂性,Voronoi图在表达居民地分布特征方面有显著优势。针对当前空间聚类较少考虑实体方向关系的问题,基于Voronoi图提出一种顾及方向关系的农村居民地聚类方法。首先,构建距离约束的Voronoi图,并构建居民地实体间的Voronoi邻近图;然后,利用无向特征与有向特征来综合评价居民地实体间的聚集强度;最后,消除聚集强度小于阈值的实体对的邻近关系,得到聚类结果。采用浙江省宁波地区部分农村居民地数据进行实验,结果表明,所提方法能够有效聚类不同分布模式的居民地,聚类结果符合人的认知习惯。
    Abstract:
      Objectives  The spatial distribution of rural settlements has unique regularity and complexity. In order to reduce the difficulty of cartographic generalization, we can cluster rural settlements first. Voronoi diagram has significant advantages in expressing the distribution characteristics of settlements, but now spatial clustering seldom considers direction relation between entities. Direction relation is an important part of spatial relation. In theory, the introduction of direction relation in spatial clustering can help to improve the clustering effect. Therefore, based on Voronoi diagram, this paper proposes a clustering method of rural settlement considering direction relation.
      Methods  First, Voronoi diagrams with distance constraint(DC-Voronoi) are constructed, and Voronoi proximity relations among settlement entities are determined. Second, undirected features are calculated based on the area of entities and the area of DC-Voronoi polygons. Directed features are calculated based on offset direction and offset distance of entities in DC-Voronoi polygons. Aggregation strength values of all entity pairs are calculated by combining undirected features and directed features. Finally, clustering result is obtained by eliminating the proximity of entity pairs whose clustering strength value is less than the threshold. Taken the data of rural settlements in Ningbo as an example, this paper sets silhouette coefficient as result evaluation index.
      Results and Conclusions  Compared with the clustering results of density-based spatial clustering of applications with noise method and clustering by fast search and find of density peaks method, the results show that the proposed method can effectively cluster rural settlements with different distribution patterns, and can accurately identify the boundary of rural settlements. The clustering granularity is moderate, and the clustering results accord with people's cognitive habits.
  • 图  1   居民地聚落的方向特征

    Figure  1.   Directional Characteristics of Rural Settlements

    图  2   Voronoi图对比

    Figure  2.   Comparison of Voronoi Diagrams

    图  3   Voronoi邻近关系对比

    Figure  3.   Comparison of Voronoi Proximity Relations

    图  4   实验区域

    Figure  4.   Experimental Area

    图  5   不同阈值下整体轮廓系数

    Figure  5.   SC Under Different Thresholds

    图  6   各类型居民地聚类结果

    Figure  6.   Clustering Results of Different Types of Rural Settlements

    图  7   实验区域局部聚类结果对比

    Figure  7.   Comparison of Local Clustering Results in Experimental Area Using Different Clustering Methods

    表  1   居民地实体间的聚集强度值

    Table  1   Aggregation Intensity Values Between Entities

    居民地ID 面积比 偏离方向/($ ° $) 偏离度 方位角/($ ° $) 聚集
    强度
    2052 0.897 209.75 0.018 240.50/60.50 35.883
    2054 0.898 212.29 0.014
    1484 0.003 91.45 0.732 119.69/299.69 5.946
    1678 0.159 220.75 0.133
    673 0.001 261.56 0.023 261.82/81.82 0.014
    1347 0.003 76.33 0.019
    3168 0.019 317.99 0.809 116.03/296.03 -0.535
    3187 0.032 102.39 0.887
    下载: 导出CSV
  • [1] 李志林, 刘启亮, 唐建波. 尺度驱动的空间聚类理论[J]. 测绘学报, 2017, 46(10): 1534-1548. doi: 10.11947/j.AGCS.2017.20170275

    Li Zhilin, Liu Qiliang, Tang Jianbo. Towards a Scale-Driven Theory for Spatial Clustering[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1534-1548. doi: 10.11947/j.AGCS.2017.20170275

    [2]

    Jain A K. Data Clustering: 50 Years Beyond K-Means[J]. Pattern Recognition Letters, 2010, 31(8): 651-666. doi: 10.1016/j.patrec.2009.09.011

    [3] 林恒, 龚威, 史硕. 利用等边长正交格网进行层次聚合聚类[J]. 武汉大学学报(信息科学版), 2018, 43(5): 786-791. doi: 10.13203/j.whugis20150668

    Lin Heng, Gong Wei, Shi Shuo. Hierarchical Agglomerative Clustering Algorithm with Equilateral Orthogonal Grid[J]. Geomatics and Information Science of Wuhan University, 2018, 43(5): 786-791. doi: 10.13203/j.whugis20150668

    [4]

    Ester M, Kriegel H P, Sander J, et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[C]//The 2nd International Conference on Knowledge Discovery and Data Mining, Portland, Oregon, USA, 1996.

    [5]

    Rodriguez A, Laio A. Clustering by Fast Search and Find of Density Peaks[J]. Science, 2014, 344(6191): 1492-1496. doi: 10.1126/science.1242072

    [6]

    Wang W, Yang J, Muntz R R. STING: A Statistical Information Grid Approach to Spatial Data Mining[C]//The 23rd International Conference on Very Large Data Bases, Athens, Greece, 1997.

    [7] 金澄, 安晓亚, 陈占龙, 等. 矢量居民地多边形多级图划分聚类方法[J]. 武汉大学学报(信息科学版), 2021, 46(1): 19-29. doi: 10.13203/j.whugis20190358

    Jin Cheng, An Xiaoya, Chen Zhanlong, et al. A Multi-level Graph Partition Clustering Method of Vector Residential Area Polygon[J]. Geomatics and Information Science of Wuhan University, 2021, 46(1): 19-29. doi: 10.13203/j.whugis20190358

    [8] 石岩, 刘启亮, 邓敏, 等. 融合图论与密度思想的混合空间聚类方法[J]. 武汉大学学报(信息科学版), 2012, 37(11): 1276-1280. http://ch.whu.edu.cn/article/id/379

    Shi Yan, Liu Qiliang, Deng Min, et al. A Hybrid Spatial Clustering Method Based on Graph Theory and Spatial Density[J]. Geomatics and Information Science of Wuhan University, 2012, 37(11): 1276-1280. http://ch.whu.edu.cn/article/id/379

    [9] 刘慧敏, 胡文柯, 唐建波, 等. 顾及功能语义特征的建筑物空间分布模式识别方法[J]. 测绘学报, 2020, 49(5): 622-631. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202005009.htm

    Liu Huimin, Hu Wenke, Tang Jianbo, et al. A Method for Recognizing Building Clusters by Considering Functional Features of Buildings[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(5): 622-631. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202005009.htm

    [10] 行瑞星, 武芳, 巩现勇, 等. 一种建筑群同质二元组直线模式的识别方法[J]. 测绘科学技术学报, 2021, 38(1): 91-96. https://www.cnki.com.cn/Article/CJFDTOTAL-JFJC202101016.htm

    Xing Ruixing, Wu Fang, Gong Xianyong, et al. A Recognition Method of Homogeneous Two-Tuple Collinear Pattern in Building Groups[J]. Journal of Geomatics Science and Technology, 2021, 38(1): 91-96. https://www.cnki.com.cn/Article/CJFDTOTAL-JFJC202101016.htm

    [11] 康顺, 李佳田, 武昊. Voronoi邻近关系支持下的点模式趋同提取方法[J]. 测绘学报, 2017, 46(5): 649-657. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201705017.htm

    Kang Shun, Li Jiatian, Wu Hao. An Extraction Method for Point Pattern Convergence Under Voronoi Adjacency Relation[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(5): 649-657. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201705017.htm

    [12] 余莉, 甘淑, 袁希平, 等. 综合线面特征分布的点目标多尺度聚类方法[J]. 测绘学报, 2015, 44(10): 1152-1159. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201510014.htm

    Yu Li, Gan Shu, Yuan Xiping, et al. Multi-scale Clustering of Points Synthetically Considering Lines and Polygons Distribution[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(10): 1152-1159. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201510014.htm

    [13] 余莉, 甘淑, 袁希平, 等. 克服双重约束的面目标位置聚类方法[J]. 测绘学报, 2016, 45(10): 1250-1259. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201610016.htm

    Yu Li, Gan Shu, Yuan Xiping, et al. Position Clustering for Polygon Object Under Dual-constrains[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(10): 1250-1259. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201610016.htm

    [14] 刘彦随. 中国新时代城乡融合与乡村振兴[J]. 地理学报, 2018, 73(4): 637-650. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201804005.htm

    Liu Yansui. Research on the Urban-Rural Integration and Rural Revitalization in the New Era in China[J]. Acta Geographica Sinica, 2018, 73(4): 637-650. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201804005.htm

    [15] 周扬, 黄晗, 刘彦随. 中国村庄空间分布规律及其影响因素[J]. 地理学报, 2020, 75(10): 2206-2223. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB202010013.htm

    Zhou Yang, Huang Han, Liu Yansui. The Spatial Distribution Characteristics and Influencing Factors of Chinese Villages[J]. Acta Geographica Sinica, 2020, 75(10): 2206-2223. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB202010013.htm

    [16] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 12343.1—2008国家基本比例尺地图编绘规范第1部分: 1∶25 000 1∶50 000 1∶100 000地形图编绘规范[S]. 北京: 中国标准出版社, 2008.

    State Administration of Quality Supervision, Inspection and Quarantine, People's Republic of China, China National Standardization Management Committee. GB/T 12343.1—2008 Compilation Specifications for National Fundamental Scale Maps-Part 1: Compilation Specifications for 1∶25 000 1∶50 000 1∶100 000 Topographic Maps[S]. Beijing: Chinese Standard Publishing House, 2008

    [17] 贺艳华, 曾山山, 唐承丽, 等. 中国中部地区农村聚居分异特征及形成机制[J]. 地理学报, 2013, 68(12): 1643-1656. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201312005.htm

    He Yanhua, Zeng Shanshan, Tang Chengli, et al. Differentiation Characteristics and Forming Mechanism of Rural Settlements in Central China[J]. Acta Geographica Sinica, 2013, 68(12): 1643-1656. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201312005.htm

    [18] 杜世宏, 雒立群, 赵文智, 等. 多尺度空间关系研究进展[J]. 地球信息科学学报, 2015, 17(2): 135-146. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201502003.htm

    Du Shihong, Luo Liqun, Zhao Wenzhi, et al. Research Progress in Multi-scale Spatial Relations[J]. Journal of Geo⁃Information Science, 2015, 17(2): 135-146. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201502003.htm

    [19] 李佳田, 吴华静, 高鹏, 等. 一种复合Voronoi几何特征的地标提取新方法[J]. 武汉大学学报(信息科学版), 2020, 45(9): 1448-1454. doi: 10.13203/j.whugis20180125

    Li Jiatian, Wu Huajing, Gao Peng, et al. Landmark Extraction via Composite Features of Voronoi Diagram[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1448-1454. doi: 10.13203/j.whugis20180125

    [20] 闫浩文, 郭仁忠. 基于Voronoi图的空间方向关系形式化描述模型[J]. 武汉大学学报(信息科学版), 2003, 28(4): 468-471. http://ch.whu.edu.cn/article/id/4879

    Yan Haowen, Guo Renzhong. A Formal Description Model of Directional Relationships Based on Voronoi Diagram[J]. Geomatics and Information Science of Wuhan University, 2003, 28(4): 468-471. http://ch.whu.edu.cn/article/id/4879

    [21] 李佳田, 罗富丽, 余莉, 等. 梯度Voronoi图及其构建算法[J]. 武汉大学学报(信息科学版), 2016, 41(2): 163-170. doi: 10.13203/j.whugis20140025

    Li Jiatian, Luo Fuli, Yu Li, et al. The Gradient Voronoi Diagram and Construction Algorithm[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 163-170. doi: 10.13203/j.whugis20140025

    [22]

    Miller H J. Tobler's First Law and Spatial Analysis[J]. Annals of the Association of American Geographers, 2004, 94(2): 284-289.

    [23] 巩现勇. 顾及分布特征和道路网约束的居民地综合方法研究[D]. 郑州: 信息工程大学, 2017.

    Gong Xianyong. Research on Settlement Generalization Methods Considering Spatial Pattern and Road Networks[D]. Zhengzhou: Information Engineering University, 2017

    [24]

    Dinh D T, Fujinami T, Huynh V N. Estimating the Optimal Number of Clusters in Categorical Data Clustering by Silhouette Coefficient[M]//Singapore: Springer, 2019.

  • 期刊类型引用(30)

    1. 刘焱雄,陈义兰,杨龙,高珊. 基于测绘学角度探讨海岸线及其测定方法. 海洋科学进展. 2024(03): 425-436 . 百度学术
    2. 王继鹏,金云智,辛忠华,吉才宇,郭龙. 基于PSO-BP的北斗卫星导航海底高程拟合技术的研究. 天然气与石油. 2024(06): 153-160 . 百度学术
    3. 付五洲,许宝华,陆彬,李涛. 重力场模型在长江口岛礁垂直基准建立中的应用. 现代测绘. 2023(04): 57-60 . 百度学术
    4. 王双喜,肖强,孙雪洁. 复杂海域高精度海底地形测量关键问题研究. 海洋技术学报. 2022(01): 7-12 . 百度学术
    5. 周颖,王瑞. 远海PPK测量潮位用于深度基准面计算的研究. 港工技术. 2022(02): 23-26 . 百度学术
    6. 柯灝,赵建虎,周丰年,吴敬文,暴景阳,赵祥伟,谢朋朋. 联合大地水准面、海面地形和潮波运动数值模拟的长江口陆海垂直基准转换关系. 武汉大学学报(信息科学版). 2022(05): 731-737+746 . 百度学术
    7. 单瑞,李浩军,刘慧敏,赵钊,董凌宇,杜凯. GNSS PPP/INS紧组合模式下的远海无验潮水深测量. 海洋地质前沿. 2022(10): 87-93 . 百度学术
    8. 张颖,闫玉茹,章家保,李静,裘露露. 潮滩冲淤观测技术发展现状. 海洋科学. 2021(03): 152-162 . 百度学术
    9. 王森,刘立龙,黄良珂,周威. 基于潮汐调和分析的全球定位系统-多路径反射测量技术潮位预报. 科学技术与工程. 2021(09): 3481-3486 . 百度学术
    10. 魏荣灏,陈佳兵,徐达. 基于PPK无验潮的水下地形测量技术研究. 海洋技术学报. 2021(01): 57-62 . 百度学术
    11. 王挺,王萃. GNSS-PPK在远距离潮位观测的应用研究. 江西测绘. 2021(04): 8-11 . 百度学术
    12. 王正杰,王峰,吴自银,曹振轶,罗孝文,李守军. 基于GPS PPK技术确定测深点瞬时潮位及分析. 海洋技术学报. 2020(02): 58-63 . 百度学术
    13. 王小刚,赵薛强,许军. 珠江口瞬时水位解算方法研究及应用. 水利水电技术. 2020(11): 117-124 . 百度学术
    14. 梁冠辉,陶常飞,周兴华,周东旭,王朝阳. 新型远距离验潮系统集成设计与研制. 海洋科学进展. 2019(01): 129-139 . 百度学术
    15. 王智明,孙月文. 无验潮模式下的宁波杭州湾水下地形测量. 城市勘测. 2019(02): 157-159 . 百度学术
    16. 陈正伟,韩磊. 基于高精度GNSS定位解算及姿态数据获取潮位研究. 海洋技术学报. 2019(05): 55-59 . 百度学术
    17. 李梦昊,王胜利,高兴国,陈冠旭,刘焱雄. 基于混合编程的实时精密单点定位方法. 海岸工程. 2018(01): 66-73 . 百度学术
    18. 黄辰虎,陆秀平,边刚,黄贤源,管明雷,翟国君,黄谟涛. 中短期验潮站验潮零点不规则漂移精密处理. 武汉大学学报(信息科学版). 2018(11): 1673-1680 . 百度学术
    19. Yuanxi YANG,Tianhe XU,Shuqiang XUE. Progresses and Prospects of Marine Geodetic Datum and Marine Navigation in China. Journal of Geodesy and Geoinformation Science. 2018(01): 16-24 . 必应学术
    20. 臧建飞,范士杰,易昌华,秦学彬,华亮,麻德明. 实时精密单点定位的远海实时GPS潮汐观测. 测绘科学. 2017(06): 155-160 . 百度学术
    21. 臧建飞,范士杰,易昌华,秦学彬,陈冠旭,华亮. 远海实时GPS潮汐的实时精密单点定位观测. 测绘科学. 2017(08): 79-84 . 百度学术
    22. 杨元喜,徐天河,薛树强. 我国海洋大地测量基准与海洋导航技术研究进展与展望. 测绘学报. 2017(01): 1-8 . 百度学术
    23. 赵建虎,欧阳永忠,王爱学. 海底地形测量技术现状及发展趋势. 测绘学报. 2017(10): 1786-1794 . 百度学术
    24. 王朝阳,周兴华,李延刚,梁冠辉,付延光. 远距离GNSS潮位测量精度的影响因素研究. 海洋技术学报. 2017(03): 1-6 . 百度学术
    25. 辛保稳,李友龙. GPS PPK技术在海底地形测量中的应用. 科技展望. 2017(18): 161 . 百度学术
    26. 杨涛,葛俊洁,李路. GPS测量技术及其在工程测量中的应用. 电子测试. 2016(06): 126+125 . 百度学术
    27. 暴景阳,翟国君,许军. 海洋垂直基准及转换的技术途径分析. 武汉大学学报(信息科学版). 2016(01): 52-57 . 百度学术
    28. 周东旭,周兴华,梁冠辉,王朝阳,杨磊. GPS浮标天线高的动态标定方法. 测绘科学. 2015(12): 121-124 . 百度学术
    29. 赵建虎,王爱学. 精密海洋测量与数据处理技术及其应用进展. 海洋测绘. 2015(06): 1-7 . 百度学术
    30. 赵元元,殷行. 土地测量中GPS实时动态技术的应用研究. 价值工程. 2015(20): 161-162 . 百度学术

    其他类型引用(6)

图(7)  /  表(1)
计量
  • 文章访问数:  488
  • HTML全文浏览量:  121
  • PDF下载量:  89
  • 被引次数: 36
出版历程
  • 收稿日期:  2020-10-14
  • 网络出版日期:  2023-04-16
  • 发布日期:  2023-04-04

目录

    /

    返回文章
    返回