The Identification of Secondary Craters based on the Distribution of Iron Element on Lunar Surface
-
摘要: 月表地质年代的确定是研究月球形成及演化历史,反演月质事件发生过程的基础。在对月表地质单元定年时,由于月球岩石、土壤和岩心样品数量有限,能够利用这些样品做同位素定年的地质单元范围很小,因此更大范围的月球表面的绝对年龄需要采用撞击坑尺寸频率定年法(crater size-frequency distribution,CSFD)测定。然而月球表面次生撞击坑的存在会导致CSFD法得到的定年结果会出现偏差,故在标注撞击坑时有必要对次生撞击坑予以剔除,以便对行星表面的地质单元做较为准确的定年。本文提出一种顾及月表铁元素含量的次生撞击坑识别方法。使用波段比值法获取月表铁元素含量信息,以次生撞击坑内铁元素含量更接近月壤铁元素含量为假设前提,以撞击坑内与月壤铁元素含量的差值为判据分离主撞击坑和次生撞击坑。文中以日本月亮女神MI多光谱数据为实验数据,验证本文方法的有效性和稳健性。实验结果表明,在依据铁元素含量剔除次生撞击坑后的定年结果与已知定年结果之差小于0.04Ga,具有较好的一致性;与其它次生撞击坑剔除方法相比,依据月表铁元素信息剔除次生撞击坑的结果更可靠。
-
关键词:
- 次生撞击坑 /
- 撞击坑尺寸频率定年法 /
- 多光谱影像 /
- 铁元素
Abstract: To determine the geologic age of the lunar surface is the foundation of the research on the formation and evolution of the Moon, and of the inversion of the processes of lunar geological events. Lack of lunar rock and soil samples limits the range of geological units that can used for isotopic dating. Therefore, the dating using crater size-frequency distribution (CSFD) is employed to obtain the geologic ages of broader regions on the lunar surface. However, the presence of secondary craters will lead to a deviation in geologic age which is obtained by CSFD method. Thus, to get a more accurate geologic age, secondary craters should be eliminated. This paper presents a method to identify secondary craters based on the distribution of iron element on lunar surface. First, the method assumes that the iron content in secondary craters is close to that in lunar regolith. Then, band ratio method is utilized to acquire the iron content. Finally, secondary craters are distinguished from primary ones in terms of the difference of iron content between craters and lunar regolith. The effectiveness and robustness of the proposed method were tested using MI multispectral data of the Japanese Selene Mission. The experimental results show that the geologic age deviation compared with the known isotopic dated ones is less than 0.04Ga, which shows good consistency. Compared with other secondary craters identification methods, the proposed approach is proven to be more effective and robust. -
-
表 1 实验区铁元素含量参数
Table 1 Iron Content Paremeters in Experimental Areas
实验区域 最大值 最小值 实验区1 0.235 5 0.001 8 0.035 3 0.033 4 实验区2 0.113 2 0.015 6 0.048 2 0.017 7 表 2 实验区和测试区定年结果/Ga
Table 2 Dating Results of Experimental and Test Areas/Ga
表 3 不同次生撞击坑探测法的定年结果对比/Ga
Table 3 Dating Results Comparison of Different Secondary Crater Detection Methods/Ga
-
[1] Neal C R. The Moon 35 years after Apollo:What's left to learn?[J]. Chemie Der Erde-geochemistry, 2009, 69(1):3-43
[2] Ding Xiaozhong, Han Kunying, Han Tonglin, et al. Compilation of the Geological Map of Sinus Iridum Quadrangle of the Moon (LQ-4)[J]. Earth Science Frontiers, 2012, 19(6):15-27(丁孝忠, 韩坤英, 韩同林, 等. 月球虹湾幅(LQ-4)地质图的编制[J]. 地学前缘, 2012, 19(6):15-27) [3] Arvidson R E, Boyce J, et al. Standard techniques for presentation and analysis of crater size-frequency data[J]. Icarus, 1979, 37(2):467-474
[4] Neukum G, Ivanov B A, Hartmann W K. Cratering Records in the Inner Solar System in Relation to the Lunar Reference System[M]//Chronology and Evolution of Mars. Springer Netherlands, 2001
[5] Korotev R L, Zeigler R A, Jolliff B L, et al. Compositional and lithological diversity among brecciated lunar meteorites of intermediate iron concentration[J]. Meteoritics & Planetary Science, 2009, 44(9):1287-1322
[6] Guo Dijun, Liu Jianzhong, Zhang Li, et al. The Method of Lunar Geochronology Study and the Subdivisions of Lunar Geologic History[J]. Earth Science Frontiers, 2014, 21(6):045-061(郭弟均,刘建忠, 张莉, 籍进柱, 刘敬稳, 王梁. 月球地质年代学研究方法及月面历史划分[J].地学前缘,2014,21(6):45-61) [7] Neukum G, Konig B, Arkanihamed J, et al. A study of lunar impact crater size-distributions[J]. Earth Moon and Planets, 1975, 12(2):201-229
[8] Neukum, G., B. Koenig, H. Fechtig, and D. Storzer. Cratering in the Earth-Moon system:Consequences for age determination by crater counting, Proc. Lunar Sci. Conf 6th, 2597-2620, 1975b
[9] Neukum G. Meteorite bombardment and dating of planetary surfaces[J]. 1984
[10] Ivanov B A. Mars/Moon Cratering Rate Ratio Estimates[J]. Space Science Reviews, 2001, 96(1-4):87-104
[11] Hiesinger H, Jaumann R, Neukum G, et al. Ages of mare basalts on the lunar nearside[J]. Journal of Geophysical Research Planets, 2000, 105(E12):29239-29275
[12] Mcewen A S, Bierhaus E B. The importance of secondary cratering to age constraints on planetary surfaces[J]. Annual Review of Earth & Planetary Sciences, 2006, 34(1):535-567
[13] Werner S C, Ivanov B A, Neukum G. Theoretical analysis of secondary cratering on Mars and an image-based study on the Cerberus Plains[J]. Icarus, 2009, 200(2):406-417
[14] Robbins S J, Hynek B M. The secondary crater population of Mars[J]. Earth & Planetary Science Letters, 2014, 400(400):66-76
[15] Xiao Z, Strom R G. Problems determining relative and absolute ages using the small crater population[J]. Icarus, 2012, 220(1):254-267
[16] Bart G D. Lunar surface geology from analysis of impact craters and their ejecta[J]. Dissertations & Theses-Gradworks, 2007
[17] Li Kun, Liu Jianjun, Mou Lingli, et al. Crater Retention Age Calculation of Lunar Geological Unit Using Small-Scale Craters[J]. Journal of Jilin University(Earth Science Edition), 2012(s2):452-459(李坤, 刘建军, 牟伶俐,等. 利用小型撞击坑测算月球地质单元撞击年龄[J]. 吉林大学学报(地球科学版), 2012(s2):452-459) [18] Bierhaus E B, Chapman C R, Merline W J. Secondary craters on Europa and implications for cratered surfaces[J]. Nature, 2005, 437(7062):1125-7
[19] Michael G, Platz T, Kneissl T, et al. Planetary surface dating from crater size-frequency distribution measurements:Spatial randomness and clustering[J]. Icarus, 2012, 218(1):169-177
[20] Honda C, Kinoshita T, Hirata N, et al. Detection abilities of secondary craters based on the clustering analysis and Voronoi diagram[C]//European Planetary Science Congress 2014, EPSC Abstracts, Vol. 9, id. EPSC2014-119
[21] Salih A L, Lompart A, Grumpe A, et al. AUTOMATIC DETECTION OF SECONDARY CRATERS AND MAPPING OF PLANETARY SURFACE AGE BASED ON LUNAR ORBITAL IMAGES[J]. 2017, XLⅡ-3/W1:125-132
[22] Savage R, Palafox L F, Morrison C T, et al. A Bayesian Approach to Subkilometer Crater Shape Analysis Using Individual HiRISE Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10):5802-5812
[23] Guo D, Liu J, Head J W, et al. Lunar Orientale Impact Basin Secondary Craters:Spatial Distribution, Size-Frequency Distribution, and Estimation of Fragment Size[J]. Journal of Geophysical Research, 2018, 123(6):1344-1367
[24] Lucey P G, Taylor G J, Malaret E R, et al. Abundance and distribution of iron on the moon[J]. Science, 1995, 268(5214):1150-1153
[25] Antonenko I, Head J W, Mustard J F, et al. Criteria for the detection of lunar cryptomaria[J]. Earth, Moon, and Planets, 1995, 69(2):141-172
[26] Plescia J B. Lunar Crater Forms on Melt Sheets-Origins and Implications for Self-Secondary Cratering and Chronology[C]. Lunar and Planetary Science Conference. Lunar and Planetary Science Conference, 2015
[27] Hartmann W K, Neukum G. Cratering Chronology and the Evolution of Mars[J]. Space Science Reviews, 2001, 96(1-4):165-194
[28] Ivanov, B. A., Neukum, G., & Wagner, R. Size-Frequency Distributions of Planetary Impact Craters and Asteroids[M]. 2001, pp. 1-34
[29] Greg Michael. Measuring the age of planetary surfaces using crater statistics. Planetary surface dating workshop, 6-7 December 2016
[30] Hiesinger H, Head J W, Wolf U, et al. Ages and stratigraphy of lunar mare basalts:A synthesis[J]. Special Paper of the Geological Society of America, 2011, 477(2011):1-51
[31] Pasckert J H, Hiesinger H, Bogert C H V D. Small-scale lunar farside volcanism[J]. Icarus, 2015, 257:336-354
[32] Gao Huixuan. Statistical Computation[M]. Peking University Press, 1995:173-176(高惠璇. 统计计算[M]. 北京大学出版社, 1995:173-176)