风云三号D星天基BDS实时定位性能分析

吴春俊, 孙越强, 王先毅, 白伟华, 孟祥广, 杜起飞

吴春俊, 孙越强, 王先毅, 白伟华, 孟祥广, 杜起飞. 风云三号D星天基BDS实时定位性能分析[J]. 武汉大学学报 ( 信息科学版). DOI: 10.13203/j.whugis20200187
引用本文: 吴春俊, 孙越强, 王先毅, 白伟华, 孟祥广, 杜起飞. 风云三号D星天基BDS实时定位性能分析[J]. 武汉大学学报 ( 信息科学版). DOI: 10.13203/j.whugis20200187
WU Chunjun, SUN Yueqiang, WANG Xianyi, BAI Weihua, MENG Xiangguang, DU Qifei. Assessment of Position Performance of BDS for Space Application Based on FY-3D Satellite[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20200187
Citation: WU Chunjun, SUN Yueqiang, WANG Xianyi, BAI Weihua, MENG Xiangguang, DU Qifei. Assessment of Position Performance of BDS for Space Application Based on FY-3D Satellite[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20200187

风云三号D星天基BDS实时定位性能分析

基金项目: 

国家自然科学基金(41505030、41606206和41775034);中国科学院空间先导专项(XDA15007501);中国科学院科研装备研制项目(YZ201129);国家重点研发计划(2017YFB0502800,2017YFB0502802)。

详细信息
    作者简介:

    吴春俊,工程师,主要从事GNSS定位和遥感的仪器研发。wuchunjun@nssc.ac.cn

    通讯作者:

    白伟华,研究员。bjbwh@163.com

  • 中图分类号: V448;TN967.1

Assessment of Position Performance of BDS for Space Application Based on FY-3D Satellite

Funds: 

the National Natural Science Foundation of China (Grant No. 41505030, 41606206 and 41775034)

  • 摘要: 随着北斗三号卫星导航系统(BeiDou Navigation Satellite System-3,BDS-3)开始向全球提供导航服务,独立使用BDS为在轨运行的卫星提供全球覆盖、全时段的定位服务成为可能。本文结合风云三号D星(FengYun-3D,FY-3D)全球卫星导航系统掩星探测仪(Global Navigation satellite system Occultation Sounder,GNOS)的真实在轨数据对天基BDS的定位性能进行了详细的分析。首先使用BDS真实广播星历计算了在不同轨道高度下的可见卫星数和定位精度因子(Position Dilution of Precision,PDOP),并结合精密星历分析了广播星历的轨道误差、时钟误差及空间信号测距误差(Signal-In-Space Range Error,SISRE)。仿真结果表明,在95%的置信水平下,从地面到2000Km的轨道高度BDS在全球范围内最小可见卫星数为6,最大PDOP小于5,星座可用性已经达到100%,全球平均可见卫星数BDS比GPS高50%以上; BDS广播星历的轨道误差为1.5m,时钟误差为2.4ns,SISRE达到了0.79m,BDS-3的卫星时钟精度已达到GPS相当的水平。然后使用GNOS在轨数据测试了BDS的可见卫星数、信号强度、伪距测量精度、定位精度等,重点对BDS-2卫星的码偏移进行了详细的分析。在轨数据分析表明,只使用BDS-2信号时在服务区域内可实现100%的定位,三维定位精度为5.53米;确认了北斗地球同步轨道、倾斜地球同步轨道、中地球轨道卫星均存在随仰角变化的码偏移,其中北斗地球同步轨道卫星在仰角低于40°时的码偏移是首次直接测量得到;使用BDS双频测量数据获得了836千米轨道高度以上顶部电离层的全球相对分布,电离层对伪距的相对延时在0.6m左右。本文的研究对于BDS的天基应用有重要意义,为天基BDS接收机的设计奠定基础。
    Abstract: As BeiDou Satellite Navigation System-3 (BDS-3) starts to provide service for global users, it is possible to get global-coverage and all-time positioning service for space application using BDS alone. The performance of space-borne BDS positioning is thoroughly analyzed with the in-orbit data of GNSS Occultation Sounder (GNOS) aboard FengYun-3D (FY-3D) satellite. Firstly, the visibility and position dilution of precision (PDOP) of BDS satellites in different LEO orbits are calculated based on real BDS ephemeris, and the orbit and clock error of broadcast ephemeris and Signal-In-Space Range Error (SISRE) are studied. The results show that the global coverage usability from ground to 2000 Km height orbit has already been 100%. The mean visible BDS satellite number across the world is 50% larger than that of GPS. For BDS broadcast ephemeris, the 3-D orbit error is 1.5m and clock error is 2.4ns. SISRE is about 0.79m and the clock accuracy of BDS-3 has reached the same level of GPS. Second, the real visible satellite number, signal strength, precision of pseudo-range and position accuracy are verified with the measurement data of GNOS. The code biases of BDS-2 satellites are focused on. The in-orbit data results show that GNOS in FY-3D could get 100% positioning with BDS-2 signals in service areas, and 3-D position accuracy is 5.53m. All BDS-2 satellites including Geosynchronous Earth Orbit (GEO), Inclined Geosynchronous Orbit and Medium Earth Orbit satellites have code biases. When the elevation is less than 40 degree, the code bias of GEO is firstly measured directly. The total electron content above 836Km LEO orbit is measured using BDS dual-frequency measurements, which can cause relative pseudo-range delay of about 0.6m. The research in this paper is of great significance to the space-based application of BDS and lays the foundation for the design of space-based BDS receivers.
  • 图  1   BDS-2、BDS-2/BDS-3、GPS和BDS-2/BDS-3/GPS可用卫星数全球分布(800 km)

    Figure  1.   Number of Visible Satellites in Global Scale for BDS-2, BDS-2/BDS-3, GPS, BDS-2/BDS-3/GPS(800 km)

    图  2   BDS-2、BDS-2/BDS-3、GPS和BDS-2/BDS-3/GPS定位精度因子(800 km)

    Figure  2.   PDOP of BDS-2, BDS-2/BDS-3, GPS, BDS-2/BDS-3/GPS(800 km)

    图  3   BDS/GPS相对于单BDS和单GPS可用卫星数的提升(800 km)

    Figure  3.   Improvement of Visible Satellites of Combined BDS/GPS to BDS Alone or GPS Alone(800 km)

    图  4   GNOS跟踪北斗卫星数全球分布

    Figure  4.   Number of Tracked BDS Satellites of GNOS

    图  5   GNOS跟踪北斗卫星天空视图

    Figure  5.   Skyplot of Tracked Satellites of GNOS

    图  6   BDS-2不同信号载噪比随仰角的变化

    Figure  6.   Variation of BDS-2 CNR with Elevation

    图  7   北斗GEO/IGSO/MEO卫星伪距精度

    Figure  7.   Accuracy of Pseudo Range for GEO/IGSO/MEO of BDS

    图  8   BDS-2卫星码偏移随俯视角和方位角的变化

    Figure  8.   Variation of BDS-2 Code Bias with Nadir and Azimuth Angles

    图  9   GPS卫星码偏移随俯视角和方位角的变化

    Figure  9.   Variation of GPS Code Bias with Nadir and Azimuth Angles

    图  10   不同类型BDS卫星的码偏移随仰角的变化

    Figure  10.   Variation of Different BDS Satellites Code Bias with Elevation

    图  11   BDS和GPS的码偏移随仰角的变化

    Figure  11.   Variation of BDS and GPS Code Bias with Elevation

    图  12   在轨定位精度及跟踪卫星数

    Figure  12.   Position Accuracy and Tracked Satellites

    图  13   定位精度和参与定位卫星数统计

    Figure  13.   Statistics of Position Accuracy and Tracked Satellites

    图  14   BDS-2 PDOP和定位精度的全球分布

    Figure  14.   Distribution of BDS-2 PDOP and Position Accuracy

    图  15   基于FY-3D星BDS在轨数据的顶部电离层电子相对含量全球分布图(> 836 km)

    Figure  15.   Distribution of Global TECU Based on FY-3D BDS Data(> 836 km)

    表  1   BDS和GPS星座设计和建设情况

    Table  1   Design and Construction of BDS and GPS

    卫星 设计星座 已运行 完成时间
    BDS-2 5 GEO
    5 IGSO
    4 MEO
    5 MEO
    7 IGSO
    3 MEO
    2012-12
    BDS-3 3 GEO
    3 IGSO
    24 MEO
    2 GEO
    3 IGSO
    24 MEO
    2020-07
    GPS 24 MEO 31 MEO 1994-03
    下载: 导出CSV

    表  2   不同轨道高度可见卫星数

    Table  2   Number of Visible Satellites in Different Height Orbits

    卫星种类 可见卫星数/个
    轨道高度300 km 轨道高度800 km 轨道高度2 000 km 轨道高度0 km
    最小值 最大值 平均值 最小值 最大值 平均值 最小值 最大值 平均值 最小值 最大值 平均值
    BDS-2* 5 15 11.18 5 15 11.09 5 15 10.87 5 15 11.23
    BDS-2/BDS-3 6 29 15.02 6 29 14.69 4 29 13.92 6 30 15.22
    GPS 6 15 10.54 5 15 10.26 5 15 9.58 6 16 10.71
    BDS-2/BDS-3/GPS 12 42 25.56 12 42 24.95 11 40 23.49 12 43 25.92
    下载: 导出CSV

    表  3   不同轨道高度卫星的定位精度因子

    Table  3   PDOP in Different Height Orbits

    卫星种类 定位精度因子
    轨道高度300 km 轨道高度800 km 轨道高度2 000 km 轨道高度0 km
    最小值 最大值 平均值 最小值 最大值 平均值 最小值 最大值 平均值 最小值 最大值 平均值
    BDS-2* 1.12 7.33 2.35 1.21 7.54 2.39 1.23 7.78 2.52 1.12 7.33 2.32
    BDS-2/BDS-3 0.81 3.38 1.47 0.81 6.15 1.53 0.87 27.14 1.66 0.79 3.11 1.44
    GPS 1.09 5.09 1.67 1.10 7.88 1.74 1.17 7.96 1.93 1.05 4.64 1.63
    BDS-2/BDS-3/GPS 0.66 1.82 1.02 0.68 2.02 1.05 0.71 2.36 1.15 0.65 1.82 1.00
    下载: 导出CSV

    表  4   不同类型卫星广播星历误差

    Table  4   Accuracy of Broadcast Ephemeris of Different Style Satellites

    类型 轨道误差/m 时钟误差/ns SISRE/m
    R T N 3D
    BDS BDS-2 GEO 0.76 2.71 1.46 3.18 2.43 1.29
    IGSO 0.36 1.53 1.75 2.36 2.40 0.83
    MEO 0.54 1.79 0.92 2.09 2.68 0.94
    BDS-3 MEO 0.11 0.45 0.37 0.59 1.94 0.61
    全部卫星 0.30 1.14 0.88 1.50 2.39 0.79
    GPS 全部卫星 0.16 0.98 0.42 1.08 1.73 0.55
    下载: 导出CSV
  • [1]

    Birmingham W P, Miller B L, Stein W L. Experimental Results of Using the GPS for Landsat 4 onboard Navigation[J]. Navigation, 1983, 30(3):244-251

    [2]

    Bauer F H, Kate H, Lightsey E G. Spaceborne GPS Current Status and Future Visions[C]. 1998 IEEE Aerospace Conference Proceedings, 1998,3

    [3]

    Montenbruck O, Markgraf M, Garcia-Fernandez M, et al. GPS for Microsatellites-Status and Perspectives[M]. Small Satellites for Earth Observation, 2007:165-174

    [4]

    Li Liu, Zhang Tianqiao, Zhou Shanshi, et al. Improved design of control segment in BDS-3[J]. Navigation, 2019, 66(1):37-47

    [5]

    Yang Yuanxi, Gao Weiguang, Guo Shuren, et al. Introduction to BeiDou-3 navigation satellite system[J]. Navigation, 2019, 66(1):7-18

    [6]

    China Satellite Navigation Office. China Satellite Navigation Office. BeiDou Navigation Satellite System Open Service Performance Standard (Version 1.0)[S]. Beijing:Dec.2013

    [7]

    Chen Xi, Zhao Sihao, Wang Menglu, et al. Space-borne BDS Receiver for LING QIAO Satellite:Design, Implementation and Preliminary In-orbit Experiment Results[J]. GPS Solutions, 2016, 20(10):837-847

    [8] Wang Fuhong, Ling Sanli, Gong Xuewen, et al. Decimeter-Level Orbit Determination for FY3C Satellite Based on Space-Borne GPS/BDS Measurements[J]. Geomatics and Information Science of Wuhan University, 2020, 45(1):1-6(王甫红,凌三力,龚学文,等. 风云三号C卫星星载GPS/BDS分米级实时定轨模型研究[J]. 武汉大学学报·信息科学版2020,45(1):1-6)
    [9]

    Jiang Kecai, Li Min, Zhao Qile, et al. BeiDou Geostationary Satellite Code Bias Modeling Using Fengyun-3C Onboard Measurements[J]. Sensors, 2017, 17(11):2460

    [10]

    Xiong Chao, Lu Chuanfang, Zhu Jun, et al. Orbit Determination using Real Tracking Data from FY3C-GNOS[J]. Advances in Space Research, 2017, 60(3):543-556

    [11]

    Yang Yuanxi, Xu Yangyin, Li Jinlong, et al. Progress and Performance Evaluation of BeiDou Global Navigation Satellite System:Data Analysis Based on BDS-3 Demonstration System[J]. Science China Earth Sciences, 2018,61(3):614-624

    [12]

    Zhang Zhiteng, Li Bofeng, Nie Liangwei, et al. Initial Assessment of BeiDou-3 Global Navigation Satellite System:Signal Quality, RTK and PPP[J]. GPS Solutions, 2019, 23:111

    [13]

    Lei W Y, Wu G C, Tao X X, et al. BDS Satellite-induced Code Multipath:Mitigation and Assessment in New-generation IOV Satellites[J]. Advances in Space Research, 2017,60(12):2672-2679

    [14]

    Wang Dongwei, Tian Yusen, Sun YueQiang, et al. Preliminary in-Orbit Evaluation of GNOS on FY3D Satellite[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium, 2018:9161-9163

    [15]

    Du Qifei, Liu Congliang, Li Wei, et al. The On-Orbit Performance of FY-3D GNOS[C]. 2019 International Geoscience and Remote Sensing Society Symposium. 2019:7669-7671

    [16]

    Sun Yueqiang, Liu Congliang, Tian Yusen, et al. The Status and Progress of Fengyun-3e GNOS Ⅱ Mission for GNSS Remote Sensing[C]. 2019 IEEE International Geoscience and Remote Sensing Symposium. 2019:5181-8184

    [17]

    Cai Yuerong, Bai Weihua, Wang Xianyi, et al. In-orbit Performance of GNOS on-board FY3-C and the Enhancements for FY-3D Satellite[J]. Advances in Space Research, 2017, 60(12):2812-2821

    [18]

    Wu Yun, Liu Xiaolei, Liu Wanke, et al. Long-term Behavior and Statistical Characterization of BeiDou Signal-in-space Errors[J]. GPS Solutions, 2017, 21:1907-1922

    [19]

    Zou Deyue, Cui Yongen, Zhang Qi, et al. Orbit Determination Algorithm and Performance Analysis of High-Orbit Spacecraft Based on GNSS[C]. IET Communications, 2019,12(20):3377-3382

    [20]

    Zhou Chen, Guo Shuren, Meng Yinan, et al. BDS-3 Spaceborne Receiver Design Applying to Space Service Volume[C]. China Satellite Navigation Conference (CSNC) 2018 Proceedings. 2018:341-354.

    [21]

    Montenbruck O, Steigenberger P, Hauschild A. Multi-GNSS Signal-in-space Range Error Assessment-Methodology and Results[J]. Advances in Space Research, 61(12):3020-3038

    [22] He Yilei. Quality Analysis of Satellite Signal for BDS-3 Simplest System[J]. Geomatics and Information Science of Wuhan University, 2020, 45(3):394-402(何义磊. 北斗三号最简系统卫星信号质量分析[J]. 武汉大学学报(信息科学版), 2020, 45(3):394-402)
    [23]

    Estey L, Meertens C. TEQC:The Multi-Purpose Toolkit for GPS/GLONASS Data[J]. GPS Solutions, 1999,3:42-49

    [24]

    Wanninger L, Beer S. BeiDou Satellite-induced Code Pseudorange Variations:Diagnosis and Therapy[J]. GPS Solutions, 2015, 19:639-648

    [25]

    Montenbruck O, Gill E. Satellite Orbits-Models, Methods and Applications[M]. 2000, Springer.

    [26]

    Zakharenkova I, Cherniak I. Underutilized Spaceborne GPS Observations for Space Weather Monitoring[J]. Space Weather, 2018,16(4):345-362

    [27]

    Zakharenkova I, Astafyeva E, Cherniak I. GPS and in situ Swarm Observations of the Equatorial Plasma Density Irregularities in the Topside Ionosphere[J]. Planets and Space, 2016, 68:120

    [28]

    Jakowski N, Wilken V, Mayer C. Space Weather Monitoring by GPS Measurements on board CHAMP[J]. Space Weather,2007,5(8)

    [29]

    Lin C H, Richmond A D, Liu J Y, et al. Theoretical Study of New Plasma Structures in the Low-latitude Ionosphere During a major Magnetic Storm[J]. JGR Space Physics, 2009114(A5):303

    [30]

    Chen Yiding, Liu Libo, Le Huijun, et al. Equatorial Ionization Anomaly in the Low-latitude Topside Ionosphere:Local Time Evolution and Longitudinal Difference[J], JGR Space Physics, 2016, 121(7):7166-7182

    [31] (孙伟, 安家春, 王泽民. 利用掩星技术研究南极地区顶部电离层特性[J]. 武汉大学学报(信息科学版), 2015, 40(11):1446-1452

    Sun Wei, An Jiachun, Wang Zemin. Analysis of Topside Ionosphere in Antarctica Based on Radio Occultation[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11):1446-1452

图(15)  /  表(4)
计量
  • 文章访问数:  1478
  • HTML全文浏览量:  417
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-22
  • 网络出版日期:  2023-02-16

目录

    /

    返回文章
    返回