Spatiotemporal Interpolation Method of NPP/VIIRS Sequence Images Considering Neighbor Relationships
-
摘要: 针对可见红外成像辐射仪(visible infrared imaging radiometer suite,VIIRS)月度夜光遥感影像的数据缺失问题,提出一种利用地物邻近关系相关性的像元时空插值方法,以时、空关系互相作为约束条件,将时序变化一致性较好的像元数据作为空间插值的参考,将空间关系一致性较好的月度数据作为时序插值的参考,通过构建不同的卷积核, 在时序和空间维度分别对初步插值结果进行卷积运算,求得待插值像元的时空插值。以2015年江苏省月度夜光遥感影像修复为例,对不同维度时空插值方法进行对比分析,结果表明, 空间维度插值虽然顾及到像元的空间关联性,仍无法满足数据大范围缺失的插值要求,插值结果整体偏低;时间维度插值考虑到像元的时间趋势性,插值精度较空间维度插值有一定提高,但部分月份插值结果有较大偏差;相对于三次Hermit插值,时空插值方法获得的月度影像灯光亮度总和的最大相对误差、年度影像灯光亮度总和相对误差以及逐像元差值均显著降低。总的来看,所提时空插值方法在插值过程中同时顾及到VIIRS数据的时间趋势平稳性和空间结构稳定性,影像插值精度提高明显,且对待插值月份前后时序数据没有严格要求,更具有广泛性。Abstract:Objectives The problem of missing data in the monthly nocturnal visible infrared imaging radiometer suite (VIIRS) remote sensing images has become one of the limitations for application. Exploring practical data processing methods to obtain high-quality spatiotemporal continuous VIIRS monthly image data has become necessary for night time light remote sensing research.Methods A spatiotemporal interpolation method of image elements using the correlation of feature proximity relationship is proposed. The image element data with good consistency of temporal variation is used as the reference for spatial interpolation. The monthly data with good consistency of spatial relationship is used as the reference for temporal interpolation, and the spatiotemporal interpolation of the image element to be interpolated is obtained by constructing different convolution kernels to convolve the preliminary interpolation results in temporal and spatial dimensions, respectively.Results Taking the monthly night time light remote sensing image restoration of Jiangsu Province in 2015 as an example, we compare and analyze the spatiotemporal interpolation methods in different dimensions. Compared with the three Hermit interpolations, the maximum relative error of the monthly image light brightness sum, the relative error of the annual image light brightness sum, and the image-by-image difference obtained by the spatiotemporal interpolation method are significantly reduced.Conclusions The proposed spatiotemporal interpolation method takes both the temporal trend smoothness and spatial structure stability of VIIRS data into account in the interpolation process, and the image interpolation accuracy is significantly improved. The proposed method is more extensive because there is no strict requirement for the time series data before and after the month to be interpolated.
-
-
表 1 VCM月度数据待插值像元占比
Table 1 Proportion of VCM Data to be Interpolated
月份/月 待插值像元占比/% 月份/月 待插值像元占比/% 1 22.41 7 21.81 2 20.00 8 8.10 3 11.20 9 8.10 4 14.90 10 11.39 5 25.27 11 18.11 6 40.84 12 27.67 表 2 不同方法的局部插值精度
Table 2 Accuracies of Different Methods in Local Areas
插值方法 区域1 区域2 绝对误差
/(nW·cm-2·sr-1)相对误差
/%方差
/(nW·cm-2·sr-1)绝对误差
/(nW·cm-2·sr-1)相对误差
/%方差
/(nW·cm-2·sr-1)Hermite插值 2 262.15 25.01 2.69 5 737.08 28.24 5.48 空间维度插值 -2 874.13 31.78 3.11 -7 699.67 37.90 5.58 时间维度插值 2 744.63 23.28 2.68 6 064.69 29.85 5.22 时空插值 -1 254.68 13.87 2.55 -3 762.37 18.52 4.86 表 3 年度影像合成结果对比
Table 3 Comparison of Annual Image Synthesis Results
统计对象 灯光总和
/(104 nW·cm-2·sr-1)灯光总和相对误差/% 像元最大值
/(nW·cm-2·sr-1)像元平均值
/(nW·cm-2·sr-1)方差
/(nW·cm-2·sr-1)VCM_ORM影像 164.73 — 368.63 2.91 — Hermite插值影像 160.72 2.44 282.87 2.83 1.25 空间维度插值影像 157.82 4.20 262.04 2.79 1.30 时间维度插值影像 158.81 3.60 269.84 2.80 1.22 时空插值影像 161.11 2.20 277.01 2.84 1.20 -
[1] Elvidge C D, Sutton P C, Pettit D R, et al. Overview of the Nightsat Mission Concept[C]//2007 Urban Remote Sensing Joint Event, Paris, France, 2007
[2] Ma T. Multi-Level Relationships Between Satellite-Derived Nighttime Lighting Signals and Social Media-Derived Human Population Dynamics[J]. Remote Sensing, 2018, 10(7): 1128 doi: 10.3390/rs10071128
[3] Tan M H, Li X B, Li S J, et al. Modeling Population Density Based on Nighttime Light Images and Land Use Data in China[J]. Applied Geography, 2018, 90: 239-247 doi: 10.1016/j.apgeog.2017.12.012
[4] 李熙, 薛翔宇. 基于波士顿矩阵的夜光遥感电力消费估算方法[J]. 武汉大学学报·信息科学版, 2018, 43(12): 1994-2002 doi: 10.13203/j.whugis20180334 Li Xi, Xue Xiangyu. Estimation Method of Nighttime Light Images' Electric Power Consumption Based on the Boston Matrix[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1994-2002 doi: 10.13203/j.whugis20180334
[5] Shi K F, Yu B L, Zhou Y Y, et al. Spatiotemporal Variations of CO2 Emissions and Their Impact Factors in China: A Comparative Analysis Between the Provincial and Prefectural Levels[J]. Applied Energy, 2019, 233/234: 170-181 doi: 10.1016/j.apenergy.2018.10.050
[6] Yu B L, Tang M, Wu Q S, et al. Urban Built-up Area Extraction from Log-Transformed NPP-VIIRS Nighttime Light Composite Data[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(8): 1279-1283 doi: 10.1109/LGRS.2018.2830797
[7] 刘权毅, 詹庆明, 李建松, 等. 珞珈一号夜间灯光影像在建设用地提取中的应用: 以武汉市为例[J]. 武汉大学学报·信息科学版, 2021, 46(1): 30-39 doi: 10.13203/j.whugis20190376 Liu Quanyi, Zhan Qingming, Li Jiansong, et al. Extracting Built-up Areas Using Luojia 1-01 Nighttime Light Imageries in Wuhan, China[J]. Geomatics and Information Science of Wuhan University, 2021, 46(1): 30-39 doi: 10.13203/j.whugis20190376
[8] Zhao X Z, Yu B L, Liu Y, et al. Estimation of Poverty Using Random Forest Regression with Multi-Source Data: A Case Study in Bangladesh[J]. Remote Sensing, 2019, 11(4): 375 doi: 10.3390/rs11040375
[9] Elvidge C D, Baugh K E, Zhizhin M, et al. Why VIIRS Data are Superior to DMSP for Mapping Nighttime Lights[J]. Proceedings of the Asia-Pacific Advanced Network, 2013, 35: 62-69 doi: 10.7125/APAN.35.7
[10] Qiu S, Shao X, Cao C Y, et al. Vicarious Validation of Straylight Correction for VIIRS Day/Night Band Using Dome-C[C]//SPIE Optical Engineering Applications, San Diego, California, USA, 2015
[11] Mills S, Weiss S, Liang C. VIIRS Day/Night Band (DNB) Stray Light Characterization and Correction[C]//SPIE Optical Engineering Applications, San Diego, California, USA, 2013
[12] Bennett M M, Smith L C. Advances in Using Multitemporal Night-Time Lights Satellite Imagery to Detect, Estimate, and Monitor Socioeconomic Dynamics[J]. Remote Sensing of Environment, 2017, 192: 176-197 doi: 10.1016/j.rse.2017.01.005
[13] 陈慕琳, 蔡红艳. VIIRS/DNB夜间灯光月度产品插补方法对比: 以北京为例[J]. 地理科学进展, 2019, 38(1): 126-138 https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ201901011.htm Chen Mulin, Cai Hongyan. Interpolation Methods Comparison of VIIRS/DNB Nighttime Light Monthly Composites: A Case Study of Beijing[J]. Progress in Geography, 2019, 38(1): 126-138 https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ201901011.htm
[14] 张海平, 周星星, 代文. 空间插值方法的适用性分析初探[J]. 地理与地理信息科学, 2017, 33(6): 14-18 doi: 10.3969/j.issn.1672-0504.2017.06.003 Zhang Haiping, Zhou Xingxing, Dai Wen. A Preliminary on Applicability Analysis of Spatial Interpolation Method[J]. Geography and Geo-Information Science, 2017, 33(6): 14-18 doi: 10.3969/j.issn.1672-0504.2017.06.003
[15] 王长鹏, 梁勇, 孙黎明, 等. 一种混合几何曲率和克里金插值的平滑地质曲面构建方法[J]. 测绘地理信息, 2020, 45(1): 62-65 Wang Changpeng, Liang Yong, Sun Liming, et al. A Method for Constructing Smooth Geological Surfaces with Mixed Geometric Curvature and Kriging Interpolation[J]. Journal of Geomatics, 2020, 45(1): 62-65
[16] 柳笑盈. 基于GIS的空气质量指数空间插值方法研究[D]. 昆明: 昆明理工大学, 2015 Liu Xiaoying. Research on Spatial Interpolation Method of Air Vibration Index Based on GIS[D]. Kunming: Kunming University of Science and Technology, 2015
[17] 刘田甲. 潮汐数据插值方法研究[D]. 南京: 南京师范大学, 2017 Liu Tianjia. Research on Interpolation Method of Tidal Data[D]. Nanjing: Nanjing Normal University, 2017
[18] 段悦, 舒红, 胡泓达. 利用MODIS温度产品进行秩修正滤波FRF时空插值[J]. 武汉大学学报·信息科学版, 2016, 41(8): 1027-1033 doi: 10.13203/j.whugis20140495 Duan Yue, Shu Hong, Hu Hongda. Using Fixed Rank Filtering to Make Spatio-Temporal Interpolation of MODIS Temperature[J]. Geomatics and Information Science of Wuhan University, 2016, 41(8): 1027-1033 doi: 10.13203/j.whugis20140495
[19] 尉桂兴. 顾及时序平稳性的时空插值方法研究[D]. 南京: 南京师范大学, 2014 Yu Guixing. A Spatio-Temporal Interpolation Method Based on the Stationarity of Time Series[D]. Nanjing: Nanjing Normal University, 2014
[20] 李彦, 王丽娜. 基于时间序列的时空插值算法改进研究[J]. 计算机科学, 2014, 41(S1): 414-416 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA2014S1102.htm Li Yan, Wang Lina. Research of Spatio-Temporal Interpolation Algorithm Based on Time Series[J]. Computer Science, 2014, 41(S1): 414-416 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA2014S1102.htm
[21] Zhao N Z, Hsu F C, Cao G F, et al. Improving Accuracy of Economic Estimations with VIIRS DNB Image Products[J]. International Journal of Remote Sensing, 2017, 38(21): 5899-5918 doi: 10.1080/01431161.2017.1331060