Simulation of Combined Orbit Determination with a Small LEO Constellation and BDS‐3 Full Constellation
-
摘要: 受限于区域监测站及地球静止轨道(geosynchronous earth orbit, GEO)卫星的静地特性,北斗卫星导航系统(BeiDou satellite navigation system,BDS)定轨精度较差,加入低轨卫星(low earth orbit,LEO)星载数据可显著提升定轨精度。使用一种由24颗LEO卫星组成的小型低轨卫星星座,在BDS-3全星座情况下,仿真分析了导航卫星与低轨卫星联合定轨对北斗卫星轨道的提升程度。分别进行仅地面测站定轨、地面测站与LEO联合定轨试验,包含全球均匀、亚太区域、亚海分布3类测站布局。结果表明:(1)仅地面测站定轨时,GEO卫星轨道三维精度在分米量级,加入LEO观测数据后,定轨精度在厘米量级,提升程度达80%以上;(2)区域地面测站时,导航卫星轨道三维精度在分米量级,加入LEO卫星后,所有类型导航卫星定轨精度均提升至数个厘米,提升效果显著;(3)全球均匀测站时,LEO的加入仍然可提升倾斜地球同步轨道/中高轨道卫星定轨精度,提升效果在毫米至厘米量级。Abstract:Objectives Limited by the regional distribution of ground monitoring stations and the geostatic characteristics of geostationary earth orbit (GEO) satellites, the GEO satellites of the BeiDou satellite navigation system (BDS) have poor orbit determination accuracy. The inclusion of spaceborne observation data of low-Earth orbit (LEO) satellites by processing combined precise orbit determination (CPOD) can improve the orbit determination accuracy of global navigation satellite systems (GNSS).Methods This study simulates and analyzes the performance of CPOD with the BDS-3 full constellation and LEO satellites in enhancing the orbit determination accuracies of BDS satellites on the basis of a small LEO satellite constellation of 24 LEOs. With the simulated observation data, experiments of POD with ground stations only and CPOD with ground stations and LEOs are conducted. Three types of station networks, i.e. the global network, the Asia-Pacific regional network, and the Asia-Sea network, are discussed.Results (1) The three dimension orbit accuracies of GEO satellites are at the decimeter magnitude in the case of POD with ground stations only. When LEO data are added, the corresponding orbit determination accuracy is at the centimeter level, with an increase of over 80%.(2) In the case of the regional station network, the three dimension root mean squares error(RMSE) of navigation satellite orbits are at the decimeter level. When LEO data are added, the orbit determination accuracies of all types of navigation satellites are several centimeters.(3) In the case of the global station network, the orbit determination accuracy of inclined GeoSynchronous orbit (IGSO) and medium Earth orbit (MEO) satellites can still be improved on an millimeter-centimeter level.Conclusions Under the regional monitoring network, the addition of a small number of LEO satellites can significantly improve the orbit accuracy of GNSS satellites. When the global uniform/Asia-Sea network is deployed, the orbit accuracy of navigation satellites can still be slightly improved after the addition of LEO satellites. With the more LEO satellites added, the improvement of the orbit determination accuracy of navigation satellites is limited.
-
-
表 1 LEO星座轨道数/(°)
Table 1 LEO Constellation Orbital Element/(°)
卫星号 升交点赤经 平近点角 卫星号 升交点赤经 平近点角 L01 60 0 L13 240 45 L02 60 90 L14 240 135 L03 60 180 L15 240 225 L04 60 270 L16 240 315 L05 120 15 L17 300 60 L06 120 105 L18 300 150 L07 120 195 L19 300 240 L08 120 285 L20 300 330 L09 180 30 L21 0 75 L10 180 120 L22 0 165 L11 180 210 L23 0 255 L12 180 300 L24 0 345 表 2 仿真轨道的力模型信息
Table 2 Force Model Information of Simulated Orbits
力模型项 策略 地球重力场 EGM2008,导航星:10×10阶;LEO:120×120阶 N体引力 DE405星历 固体、海、极潮 IERS协议 相对论效应 广义相对论 大气阻力 导航星:不考虑;LEO:DTM94模型, 每360 min估算一组 太阳光压 导航星:CODE 5参数模型;LEO:Box-Wing模型 经验力 导航星:不考虑;LEO:RTN 6周期性经验力, 每120 min估算一组 地球辐射压 不考虑 表 3 卫星精密定轨策略
Table 3 Processing Strategy of GNSS Precise Orbit Determination
观测数据 LC、PC非差无电离层组合 相位模型 GPS及地面站:igs14.atx;BDS及LEO:假定为0 截止高度角 地面站7°,LEO 0° 对流层延迟 地面站:SAAS模型+过程噪声, 天顶方向每2 h估算一次, 水平梯度每天1个;LEO无需改正 模糊度参数 地面站部分固定;LEO浮点解 钟差处理 白噪声,接收机钟差选一地面站固定为参考钟 定轨采样间隔 300 s 测站坐标 SNX周解,强约束 -
[1] 杜兰. GEO卫星精密定轨技术研究[D]. 郑州: 信息工程大学, 2006 Du Lan. A Study on the Precise Orbit Determination of Geostationary Satellites[D]. Zhengzhou: Information Engineering University, 2006
[2] Zhu S, Reigber C, König R. Integrated Adjustment of CHAMP, GRACE, and GPS Data[J]. Journal of Geodesy, 2004, 78(1/2): 103-108 http://www.onacademic.com/detail/journal_1000034439257210_54ce.html
[3] 耿江辉, 施闯, 赵齐乐, 等. 联合地面和星载数据精密确定GPS卫星轨道[J]. 武汉大学学报·信息科学版, 2007, 32(10): 906-909 http://ch.whu.edu.cn/article/id/2015 Geng Jianghui, Shi Chuang, Zhao Qile, et al. GPS Precision Orbit Determination from Combined Ground and Space-Borne Data[J]. Geomatics and Information Science of Wuhan University, 2007, 32 (10): 906-909 http://ch.whu.edu.cn/article/id/2015
[4] Zoulida M, Pollet A, Coulot D, et al. Multi-Technique Combination of Space Geodesy Observations: Impact of the Jason-2 Satellite on the GPS Satellite Orbits Estimation[J]. Advances in Space Research, 2016, 58(7): 1376-1389 doi: 10.1016/j.asr.2016.06.019
[5] König R, Reigber C, Zhu S Y. Dynamic Model Orbits and Earth System Parameters from Combined GPS and LEO Data[J]. Advances in Space Research, 2005, 36(3): 431-437 doi: 10.1016/j.asr.2005.03.064
[6] Kuang D, Bar-Sever Y, Haines B. Analysis of Orbital Configurations for Geocenter Determination with GPS and Low-Earth Orbiters[J]. Journal of Geodesy, 2015, 89(5): 471-481 doi: 10.1007/s00190-015-0792-6
[7] Zeng T, Sui L F, Jia X L, et al. Validation of Enhanced Orbit Determination for GPS Satellites with LEO GPS Data Considering Multi Ground Station Networks[J]. Advances in Space Research, 2019, 63(9): 2938-2951 doi: 10.1016/j.asr.2018.06.012
[8] Zhao Q L, Wang C, Guo J, et al. Enhanced Orbit Determination for BeiDou Satellites with Fengyun-3C Onboard GNSS Data[J]. GPS Solutions, 2017, 21(3): 1179-1190 doi: 10.1007/s10291-017-0604-y
[9] 曾添, 隋立芬, 贾小林, 等. 风云3C增强北斗定轨试验结果与分析[J]. 测绘学报, 2017, 46 (7): 824-833 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201707004.htm Zeng Tian, Sui Lifen, Jia Xiaolin, et al. Results and Analysis of BDS Precise Orbit Determination with the Enhancement of Fengyun-3C[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(7): 824-833 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201707004.htm
[10] Li X X, Zhang K K, Zhang Q, et al. Integrated Orbit Determination of Fengyun-3C, BDS, and GPS Satellites[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(9): 8143-8160 doi: 10.1029/2018JB015481
[11] Li B F, Ge H B, Ge M R, et al. LEO Enhanced Global Navigation Satellite System (LeGNSS) for Real-Time Precise Positioning Services[J]. Advances in Space Research, 2019, 63(1): 73-93 doi: 10.1016/j.asr.2018.08.017
[12] Li X X, Ma F J, Li X, et al. LEO Constellation-Augmented Multi-GNSS for Rapid PPP Convergence [J]. Journal of Geodesy, 2019, 93(5): 749-764 doi: 10.1007/s00190-018-1195-2
-
期刊类型引用(3)
1. 周永章,陈川,张旗,王功文,肖凡,沈文杰,卞静,王亚,杨威,焦守涛,刘艳鹏,韩枫. 地质大数据分析的若干工具与应用. 大地构造与成矿学. 2020(02): 173-182 . 百度学术
2. 王叶晨梓,杜震洪,张丰,刘仁义. 面向分片地图的多分辨率格点数据统一存取方法. 浙江大学学报(理学版). 2017(05): 584-590 . 百度学术
3. 朱建章,石强,陈凤娥,史晓丹,董泽民,秦前清. 遥感大数据研究现状与发展趋势. 中国图象图形学报. 2016(11): 1425-1439 . 百度学术
其他类型引用(6)