异构环境下的多子阵合成孔径声呐精确后向投影快速成像方法

钟何平, 唐劲松, 马梦博, 田振, 吴浩然

钟何平, 唐劲松, 马梦博, 田振, 吴浩然. 异构环境下的多子阵合成孔径声呐精确后向投影快速成像方法[J]. 武汉大学学报 ( 信息科学版), 2022, 47(3): 405-411. DOI: 10.13203/j.whugis20190373
引用本文: 钟何平, 唐劲松, 马梦博, 田振, 吴浩然. 异构环境下的多子阵合成孔径声呐精确后向投影快速成像方法[J]. 武汉大学学报 ( 信息科学版), 2022, 47(3): 405-411. DOI: 10.13203/j.whugis20190373
ZHONG Heping, TANG Jinsong, MA Mengbo, TIAN Zhen, WU Haoran. A Fast Accurate Back-Projection Algorithm for Multi-receiver Synthetic Aperture Sonar in Heterogeneous Environment[J]. Geomatics and Information Science of Wuhan University, 2022, 47(3): 405-411. DOI: 10.13203/j.whugis20190373
Citation: ZHONG Heping, TANG Jinsong, MA Mengbo, TIAN Zhen, WU Haoran. A Fast Accurate Back-Projection Algorithm for Multi-receiver Synthetic Aperture Sonar in Heterogeneous Environment[J]. Geomatics and Information Science of Wuhan University, 2022, 47(3): 405-411. DOI: 10.13203/j.whugis20190373

异构环境下的多子阵合成孔径声呐精确后向投影快速成像方法

基金项目: 

国家自然科学基金 42176187

国家自然科学基金 61671461

国家自然科学基金 41304015

中国博士后科学基金 2015M582813

详细信息
    作者简介:

    钟何平, 博士, 副教授, 主要从事干涉信号处理和并行计算研究。zheping525@sohu.com

  • 中图分类号: P237;TP751

A Fast Accurate Back-Projection Algorithm for Multi-receiver Synthetic Aperture Sonar in Heterogeneous Environment

Funds: 

The National Natural Science Foundation of China 42176187

The National Natural Science Foundation of China 61671461

The National Natural Science Foundation of China 41304015

China Postdoctoral Science Foundation 2015M582813

More Information
    Author Bio:

    ZHONG Heping, PhD, associate professor, specializes in signal processing of interferometry and parallel computing. E-mail: zheping525@sohu.com

  • 摘要: 针对多子阵合成孔径声呐精确后向投影成像算法效率低的问题, 提出了一种异构环境下的精确多子阵合成孔径声呐后向投影成像快速方法。在分析精确逐点后向投影成像算法原理的基础上, 将脉冲压缩和方位向聚焦过程改造为单指令多线程模式, 借助图形处理器(graphics processor unit, GPU)强大的多核计算能力加速成像过程。通过仿真和实测数据的成像实验验证了所提快速成像算法的正确性和高效性, 与串行成像算法相比, 其加速比分别高达326.3和333.6。对于大规模数据成像处理, 所提方法体现出优异的加速性能, 满足实时信号处理需求, 同时为后续开展运动补偿奠定了基础。
    Abstract:
      Objectives  Synthetic aperture sonar (SAS) is one kind of high resolution underwater imaging sonar. Its principle is to use small array to simulate large aperture array by uniforming linear motion along the direction of flight track, and realize coherent processing of echo signal to obtain high resolution two-dimensional sonar image, which is independent of imaging distance and acoustic wavelength. The back projection algorithm is an accurate point-by-point imaging algorithm, which is characterized by accurate focusing ability, suitable for wide beam and large scene imaging, and easy to realize motion compensation, but it has the disadvantages of low computational efficiency. In recent years, with the development of computer technology, especially the appearance of graphics processor unit, it has powerful computing power and provides a new way to accelerate the back projection algorithm.
      Methods  We propose a fast accurate back projection algorithm for multi-receiver SAS in heterogeneous environment. On the basis of analyzing the principle of accurate back-projection imaging algorithm, the pulse compression and time-consuming azimuth accumulation are transformed into a single instruction multi-threaded mode, and the imaging process is accelerated by the powerful multi-core computing ability of graphics processor unit.
      Results  The validity and efficiency of the proposed fast imaging algorithm are verified by the imaging experiments performed on simulated and real SAS data. Compared with the serial imaging algorithm, its acceleration ratio is as high as 326.3 and 333.6. For large-scale data imaging processing, it shows excellent acceleration performance.
      Conclusions  The proposed back projection imaging algorithm greatly improves the imaging efficiency and meets the needs of real-time SAS imaging, which lays the foundation for subsequent motion compensation.
  • 图  1   SAS成像模型

    Figure  1.   The Mode of SAS Imaging

    图  2   后向投影成像示意图

    Figure  2.   Diagram of Back Projection Algorithm

    图  3   距离向回波与参考函数相乘

    Figure  3.   Echo Multiplied with Reference in Range

    图  4   异构环境下的成像算法流程

    Figure  4.   Flowchart of Imaging Algorithm in Heterogeneous Environment

    图  5   仿真点目标成像结果

    Figure  5.   Imaging Results for the Simulated Target

    图  6   实测数据成像结果

    Figure  6.   Image Results for the Real Data

    表  1   仿真系统参数

    Table  1   System Parameter for Simulation

    参数 数值 参数 数值
    带宽/kHz 20 脉冲间隔/ms 200
    载频/kHz 150 子阵长/m 0.04
    脉宽/ms 20 子阵个数 25
    声速/(m∙s-1) 1 500 速度/(m∙s-1) 2.5
    下载: 导出CSV

    表  2   仿真点目标成像性能比较

    Table  2   Imaging Quality Comparison of Simulated Target

    方法 距离向 方位向
    IRW
    /cm
    PSLR
    /dB
    ISLR
    /dB
    IRW
    /cm
    PSLR
    /dB
    ISLR
    /dB
    串行 3.4 -13.7 -10.8 2.2 -13.0 -10.2
    并行 3.4 -13.7 -10.8 2.2 -13.1 -10.2
    下载: 导出CSV

    表  3   实验系统基本参数

    Table  3   System Parameter of the Trial

    参数 数值 参数 数值
    带宽/kHz 20 脉冲间隔/ms 320
    载频/kHz 150 子阵长/m 0.04
    脉宽/ms 20 子阵个数 40
    声速/(m∙s-1) 1446 速度/(m∙s-1) 2.5
    采样率/kHz 40 采样距离/m 51 231
    下载: 导出CSV

    表  4   不同成像方法效率比较

    Table  4   Efficiency Comparison of the Different Imaging Algorithms

    成像场景 成像方式 数据上传时间/ms 脉冲压缩时间/ms 方位叠加时间/ms 数据下载时间/ms 总成像时间/ms 加速比
    小场景 串行 3 541 3 153 097 3 156 638 1
    共享内存并行 298 148 049 148 347 21.3
    异构并行 50 33 9 553 38 9 674 326.3
    大场景 串行 10 025 10 555 120 10 565 145 1
    共享内存并行 641 456 303 456 944 23.1
    异构并行 151 90 31 311 116 31 668 333.6
    下载: 导出CSV
  • [1]

    Hayes M P, Gough P T. Synthetic Aperture Sonar: A Review of Current Status[J]. IEEE Journal of Oceanic Engineering, 2009, 34(3): 207-224 doi: 10.1109/JOE.2009.2020853

    [2] 刘经南, 阳凡林, 赵建虎. 浅析合成孔径声纳与干涉合成孔径声纳[J]. 海洋测绘, 2003, 23(2): 1-4 doi: 10.3969/j.issn.1671-3044.2003.02.001

    Liu Jingnan, Yang Fanlin, Zhao Jianhu. Elementary Introduction to Synthetic Aperture Sonar and Interferometric Synthetic Aperture Sonar[J]. Hydrographic Surveying and Charting, 2003, 23(2): 1-4 doi: 10.3969/j.issn.1671-3044.2003.02.001

    [3]

    Wang V T, Hayes M P. Synthetic Aperture Sonar Track Registration Using SIFT Image Correspondences[J]. IEEE Journal of Oceanic Engineering, 2017, 42(4): 901-913 doi: 10.1109/JOE.2016.2634078

    [4]

    Myers V, Quidu I, Zerr B, et al. Synthetic Aperture Sonar Track Registration with Motion Compensation for Coherent Change Detection[J]. IEEE Journal of Oceanic Engineering, 2019, 45(3): 1045-1062

    [5]

    Ødegård Ø, Hansen R E, Singh H, et al. Archaeological Use of Synthetic Aperture Sonar on Deepwater Wreck Sites in Skagerrak[J]. Journal of Archaeological Science, 2018, 89: 1-13 doi: 10.1016/j.jas.2017.10.005

    [6]

    Ulander L M H, Hellsten H, Stenstrom G. SyntheticAperture Radar Processing Using Fast Factorized Back-Projection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39 (3) : 760-776 doi: 10.1109/TAES.2003.1238734

    [7]

    Yegulalp A F. Fast Back Projection Algorithm for Synthetic Aperture Radar[C]//IEEE Radar Conference, Waltham, MA, USA, 1999

    [8]

    Wu H R, Tang J S, Zhong H P. Moderate Squint Imaging Algorithm for the Multiple-Hydrophone SAS with Receiving Hydrophone Dependence[J]. IET Radar, Sonar and Navigation, 2019, 13(1): 139-147 doi: 10.1049/iet-rsn.2018.5055

    [9]

    Tian Z, Tang J S, Zhong H P, et al. Extended Range Doppler Algorithm for Multiple-Receiver Synthetic Aperture Sonar Based on Exact Analytical Two-Dimensional Spectrum[J]. IEEE Journal of Oceanic Engineering, 2016, 41(1): 164-174 doi: 10.1109/JOE.2015.2402053

    [10]

    Zhang X B, Tang J S, Zhong H P. Multireceiver Correction for the Chirp Scaling Algorithm in Synthetic Aperture Sonar[J]. IEEE Journal of Oceanic Engineering, 2014, 39(3): 472-481 doi: 10.1109/JOE.2013.2251809

    [11] 王金波, 唐劲松, 张森, 等. 一种宽带大斜视STOLT插值及距离变标补偿方法[J]. 电子与信息学报, 2018, 40(7): 1575-1582 https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201807008.htm

    Wang Jinbo, Tang Jinsong, Zhang Sen, et al. Range Scaling Compensation Method Based on STOLT Interpolation in Broadband Squint SAS Imaging[J]. Journal of Electronics and Information Technology, 2018, 40(7): 1575-1582 https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201807008.htm

    [12]

    Li W J, Liao G S, Zhu S Q, et al. A Novel Helicopter-Borne RoSAR Imaging Algorithm Based on the Azimuth Chirp Z Transform[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(2): 226-230 doi: 10.1109/LGRS.2018.2871379

    [13]

    Li B L, Liu W, Liu J Y, et al. Real-Time Implementation of Synthetic Aperture Sonar Imaging on High Performance Clusters[C]//The11th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, London, UK, 2010

    [14] 方留杨, 王密, 潘俊. CPU和GPU协同的多光谱影像快速波段配准方法[J]. 武汉大学学报·信息科学版, 2018, 43(7): 1000-1007 doi: 10.13203/j.whugis20160218

    Fang Liuyang, Wang Mi, Pan Jun. CPU/GPU Cooperative Fast Band Registration Method for Multispectral Imagery[J]. Geomatics and Information Science of Wuhan University, 2018, 43 (7) : 1000-1007 doi: 10.13203/j.whugis20160218

    [15] 王鸿琰, 关雪峰, 吴华意. 一种面向CPU/GPU异构环境的协同并行空间插值算法[J]. 武汉大学学报·信息科学版, 2017, 42(12): 1688-1695 doi: 10.13203/j.whugis20150361

    Wang Hongyan, Guan Xuefeng, Wu Huayi. A Collaborative Parallel Spatial Interpolation Algorithmon Oriented Towards the Heterogeneous CPU/GPU System[J]. Geomatics and Information Science of Wuhan University, 2017, 42(12): 1688-1695 doi: 10.13203/j.whugis20150361

  • 期刊类型引用(30)

    1. 刘焱雄,陈义兰,杨龙,高珊. 基于测绘学角度探讨海岸线及其测定方法. 海洋科学进展. 2024(03): 425-436 . 百度学术
    2. 王继鹏,金云智,辛忠华,吉才宇,郭龙. 基于PSO-BP的北斗卫星导航海底高程拟合技术的研究. 天然气与石油. 2024(06): 153-160 . 百度学术
    3. 付五洲,许宝华,陆彬,李涛. 重力场模型在长江口岛礁垂直基准建立中的应用. 现代测绘. 2023(04): 57-60 . 百度学术
    4. 王双喜,肖强,孙雪洁. 复杂海域高精度海底地形测量关键问题研究. 海洋技术学报. 2022(01): 7-12 . 百度学术
    5. 周颖,王瑞. 远海PPK测量潮位用于深度基准面计算的研究. 港工技术. 2022(02): 23-26 . 百度学术
    6. 柯灝,赵建虎,周丰年,吴敬文,暴景阳,赵祥伟,谢朋朋. 联合大地水准面、海面地形和潮波运动数值模拟的长江口陆海垂直基准转换关系. 武汉大学学报(信息科学版). 2022(05): 731-737+746 . 百度学术
    7. 单瑞,李浩军,刘慧敏,赵钊,董凌宇,杜凯. GNSS PPP/INS紧组合模式下的远海无验潮水深测量. 海洋地质前沿. 2022(10): 87-93 . 百度学术
    8. 张颖,闫玉茹,章家保,李静,裘露露. 潮滩冲淤观测技术发展现状. 海洋科学. 2021(03): 152-162 . 百度学术
    9. 王森,刘立龙,黄良珂,周威. 基于潮汐调和分析的全球定位系统-多路径反射测量技术潮位预报. 科学技术与工程. 2021(09): 3481-3486 . 百度学术
    10. 魏荣灏,陈佳兵,徐达. 基于PPK无验潮的水下地形测量技术研究. 海洋技术学报. 2021(01): 57-62 . 百度学术
    11. 王挺,王萃. GNSS-PPK在远距离潮位观测的应用研究. 江西测绘. 2021(04): 8-11 . 百度学术
    12. 王正杰,王峰,吴自银,曹振轶,罗孝文,李守军. 基于GPS PPK技术确定测深点瞬时潮位及分析. 海洋技术学报. 2020(02): 58-63 . 百度学术
    13. 王小刚,赵薛强,许军. 珠江口瞬时水位解算方法研究及应用. 水利水电技术. 2020(11): 117-124 . 百度学术
    14. 梁冠辉,陶常飞,周兴华,周东旭,王朝阳. 新型远距离验潮系统集成设计与研制. 海洋科学进展. 2019(01): 129-139 . 百度学术
    15. 王智明,孙月文. 无验潮模式下的宁波杭州湾水下地形测量. 城市勘测. 2019(02): 157-159 . 百度学术
    16. 陈正伟,韩磊. 基于高精度GNSS定位解算及姿态数据获取潮位研究. 海洋技术学报. 2019(05): 55-59 . 百度学术
    17. 李梦昊,王胜利,高兴国,陈冠旭,刘焱雄. 基于混合编程的实时精密单点定位方法. 海岸工程. 2018(01): 66-73 . 百度学术
    18. 黄辰虎,陆秀平,边刚,黄贤源,管明雷,翟国君,黄谟涛. 中短期验潮站验潮零点不规则漂移精密处理. 武汉大学学报(信息科学版). 2018(11): 1673-1680 . 百度学术
    19. Yuanxi YANG,Tianhe XU,Shuqiang XUE. Progresses and Prospects of Marine Geodetic Datum and Marine Navigation in China. Journal of Geodesy and Geoinformation Science. 2018(01): 16-24 . 必应学术
    20. 臧建飞,范士杰,易昌华,秦学彬,华亮,麻德明. 实时精密单点定位的远海实时GPS潮汐观测. 测绘科学. 2017(06): 155-160 . 百度学术
    21. 臧建飞,范士杰,易昌华,秦学彬,陈冠旭,华亮. 远海实时GPS潮汐的实时精密单点定位观测. 测绘科学. 2017(08): 79-84 . 百度学术
    22. 杨元喜,徐天河,薛树强. 我国海洋大地测量基准与海洋导航技术研究进展与展望. 测绘学报. 2017(01): 1-8 . 百度学术
    23. 赵建虎,欧阳永忠,王爱学. 海底地形测量技术现状及发展趋势. 测绘学报. 2017(10): 1786-1794 . 百度学术
    24. 王朝阳,周兴华,李延刚,梁冠辉,付延光. 远距离GNSS潮位测量精度的影响因素研究. 海洋技术学报. 2017(03): 1-6 . 百度学术
    25. 辛保稳,李友龙. GPS PPK技术在海底地形测量中的应用. 科技展望. 2017(18): 161 . 百度学术
    26. 杨涛,葛俊洁,李路. GPS测量技术及其在工程测量中的应用. 电子测试. 2016(06): 126+125 . 百度学术
    27. 暴景阳,翟国君,许军. 海洋垂直基准及转换的技术途径分析. 武汉大学学报(信息科学版). 2016(01): 52-57 . 百度学术
    28. 周东旭,周兴华,梁冠辉,王朝阳,杨磊. GPS浮标天线高的动态标定方法. 测绘科学. 2015(12): 121-124 . 百度学术
    29. 赵建虎,王爱学. 精密海洋测量与数据处理技术及其应用进展. 海洋测绘. 2015(06): 1-7 . 百度学术
    30. 赵元元,殷行. 土地测量中GPS实时动态技术的应用研究. 价值工程. 2015(20): 161-162 . 百度学术

    其他类型引用(6)

图(6)  /  表(4)
计量
  • 文章访问数:  643
  • HTML全文浏览量:  195
  • PDF下载量:  49
  • 被引次数: 36
出版历程
  • 收稿日期:  2020-07-26
  • 发布日期:  2022-03-04

目录

    /

    返回文章
    返回