-
摘要: 利用重力恢复与气候实验(gravity recovery and climate experiment, GRACE)时变地球重力场模型计算得到非洲奥卡万戈三角洲地区2003-01—2014-12的陆地水储量变化信息,分别采用主成分分析(principal component analysis, PCA)和独立成分分析(independent component analysis, ICA)提取质量变化信号,并与全球陆地数据同化系统(global land data assimilation system, GLDAS)的水文模型进行对比。结果显示,在奥卡万戈河流域东北部,水储量表现出很强的周期性变化,两种数据空间特征分布的信号出现在相同位置的成分GRACE-IC1和GLDAS-IC1对应的时间序列的相关系数达到0.85。奥卡万戈三角洲地区水储量从2003-01—2011-10呈现上升趋势,两种数据空间特征分布的信号出现在相同位置的成分GRACE-IC2和GLDAS-IC3对应的时间序列的相关系数达到0.81,说明GRACE反演结果与GLDAS水文模型反演结果在研究区域内具有很强的一致性。引入全球降水气候中心降水数据和Water GAP全球水文模型数据对研究区域陆地水储量变化的原因进行分析。实验结果表明,相对于传统的多项式拟合方法,ICA可以在较大区域内直接对特定位置质量变化信号的时空特征进行提取;对比GRACE数据两种方法分解结果的第3成分可以看出,在空间尺度和时间尺度上,ICA方法对信号的分解能力要优于主成分分析方法。Abstract:Objectives Studying regional land water storage changes can better understand the characteristics of water storage changes in an area, and provide better help for the study of extreme natural disasters such as drought and flood.Methods To verify the signal decomposition ability of independent component analysis(ICA), the water storage variations in Africa's Okavango delta region from January 2003 to December 2014 was calculated using gravity recovery and climate experiment (GRACE) time-varying earth gravity field model, and the mass change was extracted by principal component analysis and ICA respectively, which was compared with the Global Land Data Assimilation System (GLDAS) hydrological model.Results The results show periodic changes of the water reserves in the northeast of Okavango river, and the correlation coefficient of the time series corresponding to GRACE-IC1 and GLDAS-IC1 between the two datasets of spatial feature distribution in the same position reaches 0.85. The water variations in the Okavango delta area increase from January 2003 to October 2011, the correlation coefficient of the time series corresponding to GRACE-IC2 and GLDAS-IC3 between the two datasets of spatial feature distribution in the same position reaches 0.81. It indicates that GRACE agrees with the GLDAS hydrological model very well in the research area. In addition, Global Precipitation Climatology Center precipitation data and WaterGAP Global Hydrology Model data were introduced to analyze the variation of terrestrial water reserves in the study area.Conclusions Compared to the traditional polynomial fitting method, the ICA can directly extract the spatial-temporal characteristics of the quality change in a specific location in a large area. By comparing the third component of the analysis results of the two GRACE methods, it can be seen that the ICA has stronger decomposition ability than the principal component analysis.
-
-
表 1 两区域不同时间段水储量变化趋势
Table 1 Trend of Water Variation in Two Regions in Different Periods
区域 时间/年 趋势/(cm·a-1) 奥卡万戈河地区 2003―2011 1.7 2012―2014 -0.4 维多利亚湖地区 2003―2006 -5.1 2007―2011 0.3 2012―2014 3.1 -
[1] 郭飞霄, 苗岳旺, 肖云, 等. 采用点质量模型方法反演中国大陆及周边地区陆地水储量变化[J]. 武汉大学学报·信息科学版, 2017, 42(7): 1002-1007 doi: 10.13203/j.whugis20150031 Guo Feixiao, Miao Yuewang, Xiao Yun, et al. Recovery Water Storage Variation in China and Its Adjacent Area by Method of Point-Mass Model[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 1002-1007 doi: 10.13203/j.whugis20150031
[2] Tapley B D, Byron D, Bettadpur S, et al. GRACE Measurements of Mass Variability in the Earth System[J]. Science, 2004, 305(5683): 503-505 doi: 10.1126/science.1099192
[3] Swenson S, Wahr J. Multi-sensor Analysis of Water Storage Variations of the Caspian Sea[J]. Geophysical Research Letters, 2007, 34(16): 245-250
[4] 李琼, 罗志才, 钟波, 等. 利用GRACE时变重力场探测2010年中国西南干旱陆地水储量变化[J]. 地球物理学报, 2013, 56(6): 1843-1849 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201306007.htm Li Qiong, Luo Zhicai, Zhong Bo, et al. Terrestrial Water Storage Changes of the 2010 Southwest China Drought Detected by GRACE Temporal Gravity Field[J]. Chinese Journal of Geophysics, 2013, 56 (6): 1843-1849 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201306007.htm
[5] 冯伟, 王长青, 穆大鹏, 等. 基于GRACE的空间约束方法监测华北平原地下水储量变化[J]. 地球物理学报, 2017, 60(5): 1630-1642 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201705002.htm Feng Wei, Wang Changqing, Mu Dapeng, et al. Groundwater Storage Variations in the North China Plain from GRACE with Spatial Constraints[J]. Chinese Journal of Geophysics, 2017, 60(5): 1630-1642 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201705002.htm
[6] 李圳, 章传银, 柯宝贵, 等. 顾及GRACE季节影响的华北平原水储量变化反演[J]. 测绘学报, 2018, 47(7): 940-949 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201807008.htm Li Zhen, Zhang Chuanyin, Ke Baogui, et al. North China Plain Water Storage Variation Analysis Based on GRACE and Seasonal Influence Considering[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47 (7): 940-949 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201807008.htm
[7] 苏晓莉, 平劲松, 叶其欣. GRACE卫星重力观测揭示华北地区陆地水量变化[J]. 中国科学: 地球科学, 2012, 42(6): 917-922 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201206012.htm Su Xiaoli, Ping Jinsong, Ye Qixin. Terrestrial Water Variations in the North China Plain Revealed by the GRACE Mission[J]. Scientia Sinica: Terrae, 2012, 42 (6) : 917-922 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201206012.htm
[8] 束秋妍, 潘云, 宫辉力, 等. 基于GRACE的华北平原地下水储量时空变化分析[J]. 国土资源遥感, 2018, 30(2): 132-137 https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG201802018.htm Shu Qiuyan, Pan Yun, Gong Huili, et al. Spatio Temporal Analysis of GRACE-Based Ground Water Storage Variation in North China Plain[J]. Remote Sensing for Land and Resources, 2018, 30(2): 132-137 https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG201802018.htm
[9] 李武东, 郭金运, 常晓涛, 等. 利用GRACE重力卫星反演2003—2013年新疆天山地区陆地水储量时空变化[J]. 武汉大学学报·信息科学版, 2017, 42(7): 1021-1026 doi: 10.13203/j.whugis20150079 Li Wudong, Guo Jinyun, Chang Xiaotao, et al. Terrestrial Water Storage Changes in the Tianshan Mountains of Xinjiang Measured by GRACE During 2003—2013[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 1021-1026 doi: 10.13203/j.whugis20150079
[10] 姚朝龙. 联合GRACE和水文气象数据研究自然与人为因素对区域水储量变化的影响[D]. 武汉: 武汉大学, 2017 Yao Chaolong. Natural-and Human-Induced Impacts on Regional Terrestrial Water Storage Changes from GRACE and Hydro-Meteorological Data[D]. Wuhan: Wuhan University, 2017
[11] 卢飞, 游为, 范东明, 等. 由GRACE RL05数据反演近10年中国大陆水储量及海水质量变化[J]. 测绘学报, 2015, 44(2): 160-167 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201502007.htm Lu Fei, You Wei, Fan Dongming, et al. Chinese Continental Water Storage and Ocean Water Mass Variations Analysis in Recent Ten Years Based on GRACE RL05 Data[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(2): 160-167 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201502007.htm
[12] Andersen O B, Krogh P E, Bauer-Gottwein P, et al. Terrestrial Water Storage from GRACE and Satellite Altimetry in the Okavango Delta (Botswana)[J]. Gravity, Geoid and Earth Observation, 2010, 135(69): 521-526
[13] Awange J L, Gebremichael M, Forootan E, et al. Characterization of Ethiopian Mega Hydrogeological Regimes Using GRACE, TRMM and GLDAS Datasets[J]. Advances in Water Resources, 2014, 74(12): 64-78
[14] Frappart F, Seoane L, Ramillien G. Validation of GRACE-Derived Terrestrial Water Storage from a Regional Approach over South America[J]. Remote Sensing of Environment, 2013, 137(8): 69-83
[15] Cardoso J F. Fourth-Order Cumulant Structure Forcing: Application to Blind Array Processing[C]. Statistical Signal and Array Processing, Victoria, BC, Canada, 1992
[16] Forootan E, Kusche J, Loth I, et al. Multivariate Prediction of Total Water Storage Changes over West Africa from Multi-matellite Data[J]. Surveys in Geophysics, 2014, 35(4): 913-940 doi: 10.1007/s10712-014-9292-0
[17] Forootan E, Awange J L, Kusche J, et al. Independent Patterns of Water Mass Anomalies over Australia from Satellite Data and Models[J]. Remote Sensing of Environment, 2012, 124: 427-443 doi: 10.1016/j.rse.2012.05.023
[18] 文汉江, 黄振威, 王友雷, 等. 青藏高原及其周边地区水储量变化的独立成分分析[J]. 测绘学报, 2016, 45(1): 9-15 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201601003.htm Wen Hanjiang, Huang Zhenwei, Wang Youlei, et al. Independent Component Analysis of Water Storage Changes Interpretation over Tibetan Plateau and Its Surrounding Areas[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(1): 9-15 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201601003.htm
[19] Wahr J, Molenaar M, Bryan F. Time Variability of the Earth's Gravity Field: Hydrological and Oceanic Effects and Their Possible Detection Using GRACE[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B12): 30205-30229 doi: 10.1029/98JB02844
[20] Thornthwaite C W. An Approach Toward a Rational Classification of Climate[J]. Geographical Review, 1948, 38(1): 55-94 doi: 10.2307/210739
[21] Chen J L, Wilson C R, Tapley B D, et al. GRACE Detects Coseismic and Postseismic Deformation from the Sumatra-Andaman Earthquake[J]. Geophysical Research Letters, 2007, 34(13): 173-180
[22] Rodell M, Houser P R, Jambor U, et al. The Global Land Data Assimilation System[J]. Bulletin of the American Meteorological Society, 2004, 85(3): 381-394 doi: 10.1175/BAMS-85-3-381
[23] Wan H, Zhang X B, Zwiers F W, et al. Effect of Data Coverage on the Estimation of Mean and Variability of Precipitation at Global and Regional Scales[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(2): 534-546 doi: 10.1002/jgrd.50118
[24] Döll P, Kaspar F, Lehner B. A Global Hydrological Model for Deriving Water Availability Indicators: Model Tuning and Validation[J]. Journal of Hydrology, 2003, 270(1/2): 105-134
[25] Werth S, Güntner A. Calibration Analysis for Water Storage Variability of the Global Hydrological Model WGHM[J]. Hydrology and Earth System Sciences Discussions, 2010, 14(1): 59-78 doi: 10.5194/hess-14-59-2010
[26] Schmidt R, Petrovic S, Güntner A, et al. Periodic Components of Water Storage Changes from GRACE and Global Hydrology Models[J]. Journal of Geophysical Research: Solid Earth, 2008, 113(B8): B08419
[27] Forootan E, Kusche J. Separation of Deterministic Signals Using Independent Component Analysis (ICA)[J]. Studia Geophysica et Geodaetica, 2013, 57(1): 17-26 doi: 10.1007/s11200-012-0718-1
-
期刊类型引用(30)
1. 刘焱雄,陈义兰,杨龙,高珊. 基于测绘学角度探讨海岸线及其测定方法. 海洋科学进展. 2024(03): 425-436 . 百度学术
2. 王继鹏,金云智,辛忠华,吉才宇,郭龙. 基于PSO-BP的北斗卫星导航海底高程拟合技术的研究. 天然气与石油. 2024(06): 153-160 . 百度学术
3. 付五洲,许宝华,陆彬,李涛. 重力场模型在长江口岛礁垂直基准建立中的应用. 现代测绘. 2023(04): 57-60 . 百度学术
4. 王双喜,肖强,孙雪洁. 复杂海域高精度海底地形测量关键问题研究. 海洋技术学报. 2022(01): 7-12 . 百度学术
5. 周颖,王瑞. 远海PPK测量潮位用于深度基准面计算的研究. 港工技术. 2022(02): 23-26 . 百度学术
6. 柯灝,赵建虎,周丰年,吴敬文,暴景阳,赵祥伟,谢朋朋. 联合大地水准面、海面地形和潮波运动数值模拟的长江口陆海垂直基准转换关系. 武汉大学学报(信息科学版). 2022(05): 731-737+746 . 百度学术
7. 单瑞,李浩军,刘慧敏,赵钊,董凌宇,杜凯. GNSS PPP/INS紧组合模式下的远海无验潮水深测量. 海洋地质前沿. 2022(10): 87-93 . 百度学术
8. 张颖,闫玉茹,章家保,李静,裘露露. 潮滩冲淤观测技术发展现状. 海洋科学. 2021(03): 152-162 . 百度学术
9. 王森,刘立龙,黄良珂,周威. 基于潮汐调和分析的全球定位系统-多路径反射测量技术潮位预报. 科学技术与工程. 2021(09): 3481-3486 . 百度学术
10. 魏荣灏,陈佳兵,徐达. 基于PPK无验潮的水下地形测量技术研究. 海洋技术学报. 2021(01): 57-62 . 百度学术
11. 王挺,王萃. GNSS-PPK在远距离潮位观测的应用研究. 江西测绘. 2021(04): 8-11 . 百度学术
12. 王正杰,王峰,吴自银,曹振轶,罗孝文,李守军. 基于GPS PPK技术确定测深点瞬时潮位及分析. 海洋技术学报. 2020(02): 58-63 . 百度学术
13. 王小刚,赵薛强,许军. 珠江口瞬时水位解算方法研究及应用. 水利水电技术. 2020(11): 117-124 . 百度学术
14. 梁冠辉,陶常飞,周兴华,周东旭,王朝阳. 新型远距离验潮系统集成设计与研制. 海洋科学进展. 2019(01): 129-139 . 百度学术
15. 王智明,孙月文. 无验潮模式下的宁波杭州湾水下地形测量. 城市勘测. 2019(02): 157-159 . 百度学术
16. 陈正伟,韩磊. 基于高精度GNSS定位解算及姿态数据获取潮位研究. 海洋技术学报. 2019(05): 55-59 . 百度学术
17. 李梦昊,王胜利,高兴国,陈冠旭,刘焱雄. 基于混合编程的实时精密单点定位方法. 海岸工程. 2018(01): 66-73 . 百度学术
18. 黄辰虎,陆秀平,边刚,黄贤源,管明雷,翟国君,黄谟涛. 中短期验潮站验潮零点不规则漂移精密处理. 武汉大学学报(信息科学版). 2018(11): 1673-1680 . 百度学术
19. Yuanxi YANG,Tianhe XU,Shuqiang XUE. Progresses and Prospects of Marine Geodetic Datum and Marine Navigation in China. Journal of Geodesy and Geoinformation Science. 2018(01): 16-24 . 必应学术
20. 臧建飞,范士杰,易昌华,秦学彬,华亮,麻德明. 实时精密单点定位的远海实时GPS潮汐观测. 测绘科学. 2017(06): 155-160 . 百度学术
21. 臧建飞,范士杰,易昌华,秦学彬,陈冠旭,华亮. 远海实时GPS潮汐的实时精密单点定位观测. 测绘科学. 2017(08): 79-84 . 百度学术
22. 杨元喜,徐天河,薛树强. 我国海洋大地测量基准与海洋导航技术研究进展与展望. 测绘学报. 2017(01): 1-8 . 百度学术
23. 赵建虎,欧阳永忠,王爱学. 海底地形测量技术现状及发展趋势. 测绘学报. 2017(10): 1786-1794 . 百度学术
24. 王朝阳,周兴华,李延刚,梁冠辉,付延光. 远距离GNSS潮位测量精度的影响因素研究. 海洋技术学报. 2017(03): 1-6 . 百度学术
25. 辛保稳,李友龙. GPS PPK技术在海底地形测量中的应用. 科技展望. 2017(18): 161 . 百度学术
26. 杨涛,葛俊洁,李路. GPS测量技术及其在工程测量中的应用. 电子测试. 2016(06): 126+125 . 百度学术
27. 暴景阳,翟国君,许军. 海洋垂直基准及转换的技术途径分析. 武汉大学学报(信息科学版). 2016(01): 52-57 . 百度学术
28. 周东旭,周兴华,梁冠辉,王朝阳,杨磊. GPS浮标天线高的动态标定方法. 测绘科学. 2015(12): 121-124 . 百度学术
29. 赵建虎,王爱学. 精密海洋测量与数据处理技术及其应用进展. 海洋测绘. 2015(06): 1-7 . 百度学术
30. 赵元元,殷行. 土地测量中GPS实时动态技术的应用研究. 价值工程. 2015(20): 161-162 . 百度学术
其他类型引用(6)