Inversion and Analysis of Atmospheric Boundary Layer Height Using FY-3C Radio Occultation Refractive Index Data
-
摘要: 2013年中国发射了首颗进行全球导航卫星系统(global navigation satellite system,GNSS)掩星观测的气象卫星风云3号C星(Fengyun-3C,FY-3C),且已发布自2014年6月以来的FY-3C掩星大气产品,但目前还未见将其应用于大气边界层的相关研究。首次尝试利用FY-3C折射率产品确定边界层高度并进一步进行空间分布分析。结果表明,在小波协方差变换法基础上, 进行尖锐度约束,能够确定FY-3C掩星低层大气折射率廓线中可能存在的突变,反演边界层高度。所得到的2015―2018年各年边界层高度全球分布在不同纬度及海洋和陆地上的差异基本体现了边界层与地表气候及地形的关系,但FY-3C折射率产品在低层大气的精度和垂直分辨率相对较低。因此,反演成功率总体上较低,反演结果对边界层高度空间分布细节特征的呈现仍有待提升。Abstract:Objectives The first meteorological satellite for global navigation satellite system (GNSS) radio occultation (RO) observation of China, Fengyun-3C (FY-3C), whose products have been released since June 2014, was launched in 2013. But the references about the application of FY-3C RO data in the study of atmospheric boundary layer height (ABLH) are still not available.Methods Firstly, we derived ABLH values by the wavelet covariance transform (WCT) method, based on FY-3C RO refractive index data. Secondly, the feasibility of the method was verified by representative and statistical comparison with the ABLH inversion results of COSMIC (constellation observing system for meteorology ionosphere and climate) RO refractive index data. Then, we presented the global distribution of FY-3C ABLHs, and made a detailed analysis.Results The heights of steep transitions in the FY-3C RO refractivity index profiles of lower atmosphere, which correspond to the ABLHs, can be derived by using the WCT method with constraints on relative sharpness. The latitudinal differences and land-sea differences in the global distributions of ABLHs basically reflect the relationship between ABLH and climate and topography.Conclusions Because of the low precision and vertical resolution of FY-3C RO products in the lower atmosphere, the success rate for the inversion process is not high on the whole, and the representations on the detailed characteristics of the distribution of ABLH need to be improved.
-
致谢: 感谢国家卫星气象中心提供FY-3C掩星大气产品数据;COSMIC数据分析中心提供COSMIC掩星大气产品数据。
-
-
[1] Garratt J R. The Atmospheric Boundary Layer[J]. Earth-Science Reviews, 1994, 37(1-2): 89-134 doi: 10.1016/0012-8252(94)90026-4
[2] 周文, 杨胜朋, 蒋熹, 等. 利用COSMIC掩星资料研究青藏高原地区大气边界层高度[J]. 气象学报, 2018, 76(1): 117-133 https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201801009.htm Zhou Wen, Yang Shengpeng, Jiang Xi, et al. Estimating Planetary Boundary Layer Height over the Tibetan Plateau Using COSMIC Radio Occultation Data[J]. Acta Meteorologica Sinica, 2018, 76(1): 117-133 https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201801009.htm
[3] Russell P B, Uthe E E, Ludwig F L, et al. A Comparison of Atmospheric Structure as Observed with Monostatic Acoustic Sounder and LiDAR Techniques[J]. Journal of Geophysical Research, 1974, 79(36): 5 555-5 566
[4] Kumar K K, Jain A R. L Band Wind Profiler Observations of Convective Boundary Layer over Gadanki, India (13.5°N, 79.2°E)[J]. Radio Science, 2006, 41(2): 1-12 doi: 10.1029/2005RS003259/full
[5] Kursinski E R, Hajj G A, Schofield J T, et al. Observing Earth's Atmosphere with Radio Occultation Measurements Using the Global Positioning System[J]. Journal of Geophysical Research, 1997, 102(D19): 23 429-23 466 doi: 10.1029/97JD01569
[6] Von E A, Teixeira J, Wickert J, et al. Using CHAMP Radio Occultation Data to Determine the Top Altitude of the Planetary Boundary Layer[J]. Geophysical Research Letters, 2005, 32(6): 667-677 doi: 10.1029/2004GL022168/full
[7] Basha S G, Ratnam M V. Identification of Atmospheric Boundary Layer Height over a Tropical Station Using High-Resolution Radiosonde Refractivity Profiles: Comparison with GPS Radio Occultation Measurements[J]. Journal of Geophysical Research Atmospheres, 2009, 114(11): 713-721
[8] Ratnam M V, Basha G. A Robust Method to Determine Global Distribution of Atmospheric Boundary Layer Top from COSMIC GPS RO Measurements[J]. Atmospheric Science Letters, 2010, 11(3): 216-222 doi: 10.1002/asl.277
[9] Sokolovskiy S, Kuo Y H, Rocken C, et al. Monitoring the Atmospheric Boundary Layer by GPS Radio Occultation Signals Recorded in the Open-Loop Mode[J]. Geophysical Research Letters, 2006, 33(12), DOI: 10.1029/2006GL025955
[10] Guo P, Kuo Y H, Sokolovskiy S V, et al. Estimating Atmospheric Boundary Layer Depth Using COSMIC Radio Occultation Data[J]. Journal of the Atmospheric Sciences, 2011, 68(8): 1 703-1 713 doi: 10.1175/2011JAS3612.1
[11] Ao C O, Waliser D E, Chan S K, et al. Planetary Boundary Layer Heights from GPS Radio Occultation Refractivity and Humidity Profiles[J]. Journal of Geophysical Research, 2012, 117(D16), DOI: 10.1029/2012JD017598
[12] Chan K M, Wood R. The Seasonal Cycle of Planetary Boundary Layer Depth Determined Using COSMIC Radio Occultation Data[J]. Journal of Geophysical Research Atmospheres, 2013, 118(22): 12 422-12 434 doi: 10.1002/2013JD020147
[13] 徐晓华, 刘树纶, 罗佳. 利用COSMIC掩星折射指数分析全球大气边界层顶结构变化[J]. 武汉大学学报·信息科学版, 2018, 43(1): 94-100 doi: 10.13203/j.whugis20160183 Xu Xiaohua, Liu Shulun, Luo Jia. Analysis on the Variation of Global ABL Top Structure Using COSMIC Radio Occultation Refractivity[J]. Geomatics and Information Science of Wuhan University, 2018, 43(1): 94-100 doi: 10.13203/j.whugis20160183
[14] Basha G, Kishore P, Ratnam M, et al. Global Climatology of Planetary Boundary Layer Top Obtained from Multi-satellite GPS RO Observations[J]. Climate Dynamics, 2019, 52: 2 385-2 398 doi: 10.1007/s00382-018-4269-1
[15] Liao M, Zhang P, Yang G L, et al. Preliminary Validation of the Refractivity from the New Radio Occultation Sounder GNOS/FY-3C[J]. Atmospheric Measurement Techniques, 2016, 9(2): 781-792 doi: 10.5194/amt-9-781-2016
[16] 徐晓华, 朱洲宗, 罗佳. 利用IGRA2探空数据和COSMIC掩星资料对FY‐3C掩星中性大气产品进行质量分析[J]. 武汉大学学报·信息科学版, 2020, 45(3): 384-393 doi: 10.13203/j.whugis20180490 Xu Xiaohua, Zhu Zhouzong, Luo Jia. Quality Analysis of the Neutral Atmospheric Products from FY-3C Radio Occultation Based on IGRA2 Radiosonde Data and COSMIC Radio Occulation Products[J]. Geomatics and Information Science of Wuhan University, 2020, 45(3): 384-393 doi: 10.13203/j.whugis20180490
[17] Fengyun Satellite Data Center[EB/OL].[2019-09-01].http://satellite.nsmc.org.cn/PortalSite/Data/DataView.aspx
[18] CDAAC: COSMIC Data Analysis and Archive Center[EB/OL].[2019-09-01].https://cdaac-www.cosmic.ucar.edu/
[19] Gamage N, Hagelberg C. Detection and Analysis of Microfronts and Associated Coherent Events Using Localized Transforms[J]. Journal of the Atmospheric Sciences, 1993, 50 (5): 750-756 doi: 10.1175/1520-0469(1993)050<0750:DAAOMA>2.0.CO;2
[20] Lewis H W. A Robust Method for Tropopause Altitude Identification Using GPS Radio Occultation Data[J]. Geophysical Research Letters, 2009, 36, DOI: 10.1029/2009GL039231