引导式的卷积神经网络视频行人动作分类改进方法

A Guided Method for Improving the Video Human Action Classification in Convolutional Neural Networks

  • 摘要: 如何提升网络模型对时域信息的理解能力,是基于3D卷积神经网络视频行人动作分类方法需要解决的问题之一。提出一种主导层优化模块,在网络训练过程中,利用当前时域动态信息学习能力最强的卷积层作为主导层来引导网络权重参数的更新,使各卷积层对动态信息的学习能力逐渐增强,从而改进卷积神经网络模型对时域动态信息的理解能力。仿真结果显示,添加主导层优化模块后的ResNeXt-50网络与ResNeXt-101网络在UCF-101和HMDB-51数据库上的训练收敛速度都有所增加,测试结果的准确率均有不同程度提升。

     

    Abstract:
      Objectives  In order to improve the ability of convolutional neural networks (CNNs) of understanding temporal dynamic information, this paper proposes a dominant layer optimization module.
      Methods  The new module uses the dominant layer to guide and optimize the update gradient of convolutional layer weights, and assist the difference estimation with the maximum mean difference algorithm of a reproducing Hilbert space.
      Results  In continuous training, the network can improve the learning ability of temporal dynamic information, and the dynamic information similarity between the features learned by convolutional layer and the input data is also increased.
      Conclusions  This module enhances the performance of the CNNs model on video human action classification and achieves improvements to the network.

     

/

返回文章
返回