Monitoring of Interannual Variabilities and Outburst Regularities Analysis of Glacial Lakes at the End of Gongba Glacier Utilizing SAR Images
-
摘要: 受全球气候变化的影响,近年来藏东南区域多数冰川退化加剧,冰湖的异动也更为频繁,冰湖溃决诱发洪水、涌浪、泥石流等山地灾害的风险激增。以多源时序合成孔径雷达(synthetic aperture radar,SAR)影像为数据源,从水体和非水体信号的强度差异出发,开展冰湖的分类方法研究,提出了一种基于时序SAR影像的强度标准化比值实施冰湖提取与动态监测的方法。为了验证方法的可行性,选取日本航天局的ALOS/PALSAR-1与欧空局的Sentinel-1A影像序列,针对位于贡巴冰川流域的典型实验区,在11 a的时间跨度上开展了冰湖动态提取和长时序变化分析。通过实验成功获取了贡巴冰川末端冰湖2007-2018年间的时空变化,进而发现近10 a间冰湖的体量呈高速增长的态势,这从侧面也印证了贡巴冰川消融加剧的现状。此外,2018年的新近监测结果表明,局部溃决涌道的扩张打破了冰湖固有的生存周期,甚至会诱发洪水和泥石流次生灾害的发生,有必要加强监测与防范。Abstract: Affected by global climate change, most glaciers in southeastern Tibet have deteriorated more and more frequently. The risk of mountain disasters, such as floods, surges and debris flows, has increased sharply in recent years. This paper implements a research on glacial lakes classification by using multi-source synthetic aperture radar (SAR) images. According to the statistical analysis of intensity difference between signals coming from water and non-water objects, a method of glacial lake extraction and dynamic monitoring based on the intensity standardization ratio of sequential SAR images is proposed. Within a typical experimental area in Gongba Glacier basin, the image series of ALOS/PALSAR-1 of Japan Space Agency and Sentinel-1A of European Space Agency are selected to carry out dynamic extraction of glacial lakes and long-term change analysis over 11 years'time, just for validation purpose. The temporal and spatial variations of glacial lakes at the end of Gongba Glacier from 2007 to 2018 are successfully obtained. And the further analysis finds out that the volume of glacial lakes increase rapidly in the past ten years. This evidence can also confirm the current situation of aggravated melting of Gongba Glacier. In addition, the recent monitoring results in 2018 show that the expansion of local burst gushes has broken the inherent life cycle of glacial lakes, and even trigger secondary disasters of floods and debris flows. It is necessary to strengthen monitoring and prevention.
-
Keywords:
- SAR /
- glacial lakes /
- Gongba Glacier /
- outburst /
- remote sensing classification
-
-
-
[1] Liu J, Cheng Z, Su P. The Relationship Between Air Temperature Fluctuation and Glacial Lake Outburst Floods in Tibet, China[J].Quaternary International, 2014, 321(2): 78-87 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bdf5bb12626ae36c17911d89c0bf2729
[2] Cenderelli D A, Wohl E E. Peak Discharge Estimates of Glacial-Lake Outburst Floods and "Normal" Climatic Floods in the Mount Everest Region, Nepal[J].Geomorphology, 2001, 40(1): 57-90 http://cn.bing.com/academic/profile?id=f6b65f87be5c8aefd232932675e33c6f&encoded=0&v=paper_preview&mkt=zh-cn
[3] Richardson S D, Reynolds J M. An Overview of Glacial Hazards in the Himalayas[J]. Quaternary International, 2000, 65-66: 31-47 doi: 10.1016/S1040-6182(99)00035-X
[4] 马荣华, 杨桂山, 段洪涛, 等.中国湖泊的数量、面积与空间分布[J].中国科学:地球科学, 2011, 41(3): 394-401 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201103011 Ma Ronghua, Yang Guishan, Duan Hongtao, et al. China's Lakes at Present: Number, Area and Spatial Distribution[J].Science China Earth Sciences, 2011, 41(3): 394-401 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201103011
[5] 姚晓军, 刘时银, 李龙, 等.近40年可可西里地区湖泊时空变化特征[J].地理学报, 2013, 68(7):886-896 http://d.old.wanfangdata.com.cn/Periodical/dlxb201307002 Yao Xiaojun, Liu Shiyin, Li Long, et al. Spatial-Temporal Variations of Lake Area in Hoh Xil Region in the Past 40 Years[J].Acta Geographica Sinica, 2013, 68(7):886-896 http://d.old.wanfangdata.com.cn/Periodical/dlxb201307002
[6] 丁永建, 刘时银, 叶柏生, 等.近50 a中国寒区与旱区湖泊变化的气候因素分析[J].冰川冻土, 2006, 28(5): 623-632 doi: 10.3969/j.issn.1000-0240.2006.05.001 Ding Yongjian, Liu Shiyin, Ye Baisheng, et al. Climatic Implications on Variations of Lakes in the Cold and Arid Regions of China During the Recent 50 Years[J].Journal of Glaciology and Geocryology, 2006, 28(5): 623-632 doi: 10.3969/j.issn.1000-0240.2006.05.001
[7] 王欣, 刘时银, 姚晓军, 等.我国喜马拉雅山区冰湖遥感调查与编目.地理学报, 2010, 65(1): 29-36 http://d.old.wanfangdata.com.cn/Periodical/dlxb201001003 Wang Xin, Liu Shiyin, Yao Xiaojun, et al. Glacier Lake Investigation and Inventory in the Chinese Himalayas Based on the Remote Sensing Data[J].Acta Geographica Sinica, 2010, 65(1): 29-36 http://d.old.wanfangdata.com.cn/Periodical/dlxb201001003
[8] 姚晓军, 刘时银, 韩磊, 等.冰湖的界定与分类体系——面向冰湖编目和冰湖灾害研究[J].地理学报, 2017, 72(7): 1 173-1 183 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlxb201707004 Yao Xiaojun, Liu Shiyin, Han Lei, et al. Definition and Classification Systems of Glacial Lake for Inventory and Hazards Study[J]. Acta Geographica Sinica, 2017, 72(7): 1 173-1 183 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlxb201707004
[9] 孙美平, 刘时银, 姚晓军, 等. 2013年西藏嘉黎县"7.5"冰湖溃决洪水成因及潜在危害[J].冰川冻土, 2014, 36(1): 158-165 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bcdt201401020 Sun Meiping, Liu Shiyin, Yao Xiaojun, et al. The Cause and Potential Hazard of Glacial Lake Outburst Flood Occurred on July 5, 2013 in Jiali County, Tibet[J]. Journal of Glaciology and Geocryology, 2014, 36(1): 158-165 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bcdt201401020
[10] 姚晓军, 刘时银, 孙美平, 等.20世纪以来西藏冰湖溃决灾害事件梳理[J].自然资源学报, 2014, 29(8):1 377-1 390 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzyxb201408010 Yao Xiaojun, Liu Shiyin, Sun Meiping, et al. Study on the Glacial Lake Outburst Flood Events in Tibet Since the 20th Century[J]. Journal of Natural Resources, 2014, 29(8):1 377-1 390 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzyxb201408010
[11] Hasnain S I. Himalayan Glaciers: Hydrology and Hydrochemistry[M]. Mumbai:Allied Publishers, 1999
[12] Mangerud J, Gosse J, Matiouchkov A, et al. Glaciers in the Polar Urals, Russia, Were not Much Larger During the Last Global Glacial Maximum than Today[J]. Quaternary Science Reviews, 2008, 27(9-10): 1 047-1 057 doi: 10.1016/j.quascirev.2008.01.015
[13] Byers A. Contemporary Human Impacts on Alpine Ecosystems in the Sagarmatha(Mt. Everest) National Park, Khumbu, Nepal[J]. Annals of the Association of American Geographers, 2005, 95(1): 112-140 doi: 10.1111/j.1467-8306.2005.00452.x
[14] Jawak S D, Kulkarni K, Luis A J. A Review on Extraction of Lakes from Remotely Sensed Optical Satellite Data with a Special Focus on Cryospheric Lakes[J]. Advances in Remote Sensing, 2015, 4(3): 177-195 doi: 10.4236/ars.2015.43015
[15] Deus D, Gloaguen R. Remote Sensing Analysis of Lake Dynamics in Semi-Arid Regions: Implication for Water Resource Management. Lake Manyara, East African Rift, Northern Tanzania[J]. Water, 2013, 5(2): 698-727 doi: 10.3390/w5020698
[16] Racoviteanu A, Williams M, Barry R. Optical Remote Sensing of Glacier Characteristics: A Review with Focus on the Himalaya[J].Sensors, 2008, 8(5): 3 355-3 383 doi: 10.3390/s8053355
[17] Song C, Huang B, Ke L, et al. Remote Sensing of Alpine Lake Water Environment Changes on the Tibetan Plateau and Surroundings: A Review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 92: 26-37 doi: 10.1016/j.isprsjprs.2014.03.001
[18] Sakai A. Glacial Lakes in the Himalayas: A Review on Formation and Expansion Processes[J].Global Environmental Research, 2012, 16: 23-30 https://pdfs.semanticscholar.org/9693/47b79d92376bba11b2d4c571aa2c0e500430.pdf
[19] 周志伟, 鄢子平, 刘苏, 等.永久散射体与短基线雷达干涉测量在城市地表形变中的应用[J].武汉大学学报·信息科学版, 2011, 36(8): 928-931 http://ch.whu.edu.cn/CN/abstract/abstract635.shtml Zhou Zhiwei, Yan Ziping, Liu Su, et al. Persistent Scatterers and Small Baseline SAR Interferometry for City Subsidence Mapping: A Case Study in Panjin, China[J]. Geomatics and Information Science of Wuhan University, 2011, 36(8): 928-931 http://ch.whu.edu.cn/CN/abstract/abstract635.shtml
[20] 周春霞, 鄂栋臣, 廖明生. InSAR用于南极测图的可行性研究[J].武汉大学学报·信息科学版, 2004, 29(7): 619-623 http://ch.whu.edu.cn/CN/abstract/abstract4513.shtml Zhou Chunxia, E Dongchen, Liao Mingsheng. Feasibility of InSAR Application to Antarctic Mapping[J].Geomatics and Information Science of Wuhan University, 2004, 29(7): 619-623 http://ch.whu.edu.cn/CN/abstract/abstract4513.shtml
[21] 邓方慧, 周春霞, 王泽民, 等.利用偏移量跟踪测定Amery冰架冰流汇合区的冰流速[J].武汉大学学报·信息科学版, 2015, 40(7): 901-906 http://ch.whu.edu.cn/CN/abstract/abstract3296.shtml Deng Fanghui, Zhou Chunxia, Wang Zemin, et al. Ice-Flow Velocity Derivation of the Confluence Zone of the Amery Ice Shelf Using Offset-Tracking Method[J]. Geomatics and Information Science of Wuhan University, 2015, 40(7): 901-906 http://ch.whu.edu.cn/CN/abstract/abstract3296.shtml
[22] 赵磊, 陈尔学, 李增元, 等.基于均值漂移和谱图分割的极化SAR影像分割方法及其评价[J].武汉大学学报·信息科学版, 2015, 40(8): 1 061-1 068 http://ch.whu.edu.cn/CN/abstract/abstract3413.shtml Zhao Lei, Chen Erxue, Li Zengyuan, et al. Segmentation of PolSAR Data Based on Mean-Shift and Spectral Graph Partitioning and Its Evaluation[J]. Geomatics and Information Science of Wuhan University, 2015, 40(8): 1 061-1 068 http://ch.whu.edu.cn/CN/abstract/abstract3413.shtml
[23] 李玉, 胡海峰, 赵雪梅, 等.基于可变形状参数Gamma分布的模糊聚类多视SAR图像分割[J].武汉大学学报·信息科学版, 2018, 43(7): 984-992 http://ch.whu.edu.cn/CN/abstract/abstract6143.shtml Li Yu, Hu Haifeng, Zhao Xuemei, et al. Fuzzy Clustering Algorithm for Multi-view SAR Image Segmentation Based on Gamma Distribution with Variable Shape Parameter[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 984-992 http://ch.whu.edu.cn/CN/abstract/abstract6143.shtml
[24] Wang H, Zhou Z, Turnbull J, et al. Pol-SAR Classification Based on Generalized Polar Decomposition of Mueller Matrix[J].IEEE Geoscience and Remote Sensing Letters, 2016, 13(4): 565-569 doi: 10.1109/LGRS.2016.2525775
[25] 苏珍.贡嘎山海洋性冰川发育条件及分布特征[J].冰川冻土, 1992, 15(4):551-558 http://www.cnki.com.cn/Article/CJFDTOTAL-BCDT199304003.htm Su Zhen.The Condition of Development and Distributed Characteristic of the Mt. Gongga Glacier[J]. Journal of Glaciology and Geocryology, 1992, 15(4):551-558 http://www.cnki.com.cn/Article/CJFDTOTAL-BCDT199304003.htm
[26] 张宁宁, 何元庆, 段克勤, 等.贡嘎山西坡贡巴冰川25 a的变化情况[J].冰川冻土, 2008, 30(3):380-382 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bcdt200803004 Zhang Ningning, He Yuanqing, Duan Keqin, et al. Changes of Gongba Glacier in the West Slope of Mt. Gongga During the Past 25 Years[J]. Journal of Glaciology and Geocryology, 2008, 30(3):380-382 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bcdt200803004
[27] 曹真堂.贡嘎山贡巴冰川水文特征[J].冰川冻土, 1988, 10(1):57-65 http://www.cnki.com.cn/Article/CJFDTotal-BCDT198801007.htm Cao Zhentang. The Hydrologic Characteristics of the Gongba Glacier in the Mount Gongga Area[J]. Journal of Glaciology and Geocryology, 1988, 10(1):57-65 http://www.cnki.com.cn/Article/CJFDTotal-BCDT198801007.htm
[28] 康建成.贡巴冰川边缘冰碛垄特征与形成过程[J].冰川冻土, 1989, 11(2): 172-176, 193 http://www.cnki.com.cn/Article/CJFDTOTAL-BCDT198902007.htm Kang Jiancheng. The Characteristics and Forming Process of Glacial Peripheral Moraines at Gongba Glaciers in Mt. Gongga[J].Journal of Glaciology and Geocryology, 1989, 11(2): 172-176, 193 http://www.cnki.com.cn/Article/CJFDTOTAL-BCDT198902007.htm
[29] Ma X, Wu P, Wu Y, et al. A Review on Recent Developments in Fully Polarimetric SAR Image Despeckling[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(3): 743-758 doi: 10.1109/JSTARS.2017.2768059
[30] Sha C, Hou J, Cui H. A Robust 2D Otsu's Thresholding Method in Image Segmentation[J].Journal of Visual Communication and Image Representation, 2016, 41: 339-351 doi: 10.1016/j.jvcir.2016.10.013
-
期刊类型引用(46)
1. 刘春雷,张媛静,陆晨明,李亚松,李剑锋. 基于时序InSAR的九龙江河口地区地面沉降时空演变规律及成因分析. 应用海洋学学报. 2024(01): 116-125 . 百度学术
2. 陈瑞瑞,孙颢月,朱紫若,蒋雪中,陈沈良,陈静. 黄河三角洲地面沉降研究进展与未来展望. 海岸工程. 2024(01): 1-23 . 百度学术
3. 赵凤阳,周吕,魏玉业. 融合改进鲸鱼算法解缠的梧州市地面沉降InSAR监测. 遥感信息. 2024(01): 52-58 . 百度学术
4. 侯永浩,张兴,李晓民,李宗仁. SBAS-InSAR技术在地质灾害调查中的应用. 北京测绘. 2024(10): 1477-1481 . 百度学术
5. 柳新强,姜刚,刘军峰,贺国伟. PS-InSAR和SBAS-InSAR的地表沉降监测对比研究——以雄安新区为例. 工程勘察. 2023(01): 62-67 . 百度学术
6. 曾敏,皮鹏程,赵信文,陈松,彭红霞,侯清芹,孙慧敏,薛紫萱. 基于PS-InSAR的珠江口典型填海造地区地面沉降时空特征研究. 华南地质. 2023(01): 116-126 . 百度学术
7. 李文慧,王志伟,赵月,王翔. 基于SNAP-StaMPS方法的高速公路沿线地面沉降监测. 测绘工程. 2023(03): 36-43 . 百度学术
8. 周定义,左小清,赵志芳,喜文飞,葛楚. 基于SBAS-InSAR和改进BP神经网络的城市地面沉降预测. 地质通报. 2023(10): 1774-1783 . 百度学术
9. 刘泽洲,卢才武,章赛,李萌,和郑翔. 基于多阈值目标提取的时序InSAR矿区地表沉降监测研究. 中国矿业. 2022(08): 79-85 . 百度学术
10. 王新田,刘增珉,陈建忠,梁菲,孟萌,李天鹤. 山东省地表形变InSAR监测与分析. 测绘通报. 2022(S2): 130-134 . 百度学术
11. 邓晓景,曲国庆,张建霞,席换,王晖. 融合升降轨PS-InSAR东营市地面沉降监测. 山东理工大学学报(自然科学版). 2021(01): 10-16 . 百度学术
12. 杨利,薛东剑,王海方,付林,张婷. 五龙沟矿区时序InSAR地表形变监测. 中国矿业. 2021(03): 107-112 . 百度学术
13. 程琳琳,杨玉曼,李月颖,孙梦尧,王振威,焦路尧. 矿业型村镇转型期发展问题分析与策略研究:以北京市门头沟区为例. 中国矿业. 2021(03): 101-106 . 百度学术
14. 王辉,曾琪明,焦健,陈继伟. 结合序贯平差方法监测地表形变的InSAR时序分析技术. 北京大学学报(自然科学版). 2021(02): 241-249 . 百度学术
15. 付云霞,管勇,王晓丹,王建收,尹政,周晓雪,王青,徐美君. 大型河口三角洲地面沉降机制研究——以黄河三角洲为例. 海岸工程. 2021(02): 83-95 . 百度学术
16. 关金环,高明亮,宫辉力. 首都国际机场区域差异性沉降原因探讨. 测绘科学. 2021(09): 67-75 . 百度学术
17. 柴华彬,胡吉彪,耿思佳. 融合实测数据的地表沉降SBAS-InSAR监测方法. 煤炭学报. 2021(S1): 17-24 . 百度学术
18. 程霞,张永红,邓敏,吴宏安,康永辉. Sentinel-1A卫星的黄河三角洲近期地表形变分析. 测绘科学. 2020(02): 43-51 . 百度学术
19. 卢旺达,韩春明,岳昔娟,赵迎辉,周格仪. 基于Sentinel-1A数据的天津地区PS-InSAR地面沉降监测与分析. 遥感技术与应用. 2020(02): 416-423 . 百度学术
20. 向淇文,潘建平,张广泽,徐正宣,张定凯,涂文丽. 基于SBAS技术的川藏铁路折多山地区地表形变监测与分析. 测绘工程. 2020(04): 48-54+59 . 百度学术
21. 张金盈,崔靓,刘增珉,王新田,林琳,徐凤玲. 利用Sentinel-1 SAR数据及SBAS技术的大区域地表形变监测. 测绘通报. 2020(07): 125-129 . 百度学术
22. 狄桂栓. 基于InSAR技术的黄河三角洲区域地表形变浅析. 地理空间信息. 2020(09): 106-109+8 . 百度学术
23. 高辉,罗孝文,吴自银,阳凡林. 基于时序InSAR的珠江口大面积地面沉降监测. 海洋学研究. 2020(02): 81-87 . 百度学术
24. 韩红花. 黄河三角洲区域地表形变监测研究. 山东国土资源. 2020(11): 69-72 . 百度学术
25. 夏元平,陈志轩,张毅. 南昌市地面沉降InSAR监测及影响因子分析. 测绘科学. 2020(11): 115-122+129 . 百度学术
26. 贺跃光,肖亮. 某水溶开采矿区短基线集InSAR高相干点探测. 中国锰业. 2019(01): 89-93 . 百度学术
27. 张静,丁黄平,刘纯,谢文然,时雨. 基于InSAR技术的盘锦地区地面沉降研究. 世界地质. 2019(02): 574-580 . 百度学术
28. 韩红超,符华年,张文峰,温浩. InSAR、水准多维沉降监测体系建设及应用研究. 测绘通报. 2019(S1): 236-241 . 百度学术
29. 师芸,李伟轩,唐亚明,席磊,孟欣. 时序InSAR技术在地球环境监测及其资源管理中的应用:以交城-清徐地区为例. 武汉大学学报(信息科学版). 2019(11): 1613-1621 . 百度学术
30. 杨帆,王道顺,张磊,张子文. 基于时序InSAR的隧道工程形变监测与分析. 测绘与空间地理信息. 2019(10): 1-4 . 百度学术
31. 黄洁慧,谢谟文,王立伟. 基于SBAS-InSAR技术的白格滑坡形变监测研究. 人民长江. 2019(12): 101-105 . 百度学术
32. 黄洁慧,谢谟文,王立伟. 基于差分干涉合成孔径雷达技术的米林滑坡形变监测. 科学技术与工程. 2019(25): 7-12 . 百度学术
33. 李锁乐,吴宏安,张永红,康永辉,左振华. 包头市地面沉降高分辨率时序InSAR监测. 测绘科学. 2018(09): 76-80 . 百度学术
34. 杨帆,张磊,张子文,赵增鹏. 利用短基线集InSAR技术监测抚顺市地面沉降. 测绘通报. 2018(03): 84-88 . 百度学术
35. 张静,冯东向,綦巍,周雪,赵玉星. 基于SBAS-InSAR技术的盘锦地区地面沉降监测. 工程地质学报. 2018(04): 999-1007 . 百度学术
36. 贺晓阳,赵盟,程存付. 小基线集技术在矿区地表形变监测中的应用. 河南科技. 2018(13): 97-98 . 百度学术
37. LIU Xiao,LIU Jie,FENG Xiuli. Inversion and Prediction of Consolidation Settlement Characteristics of the Fluvial Sediments Based on Void Ratio Variation in the Northern Modern Yellow River Subaqueous Delta, China. Journal of Ocean University of China. 2018(03): 545-554 . 必应学术
38. 李达,邓喀中,高晓雄,牛海鹏. 基于SBAS-InSAR的矿区地表沉降监测与分析. 武汉大学学报(信息科学版). 2018(10): 1531-1537 . 百度学术
39. 张炜,张伟胜,张东升,胡文敏,孙毓言,唐佳佳. 采动覆岩活动规律的“空-地”监测技术. 中国矿业大学学报. 2018(06): 1212-1223 . 百度学术
40. 王小侣. 水电站大坝400V备自投改造研究. 河南科技. 2018(19): 90-91 . 百度学术
41. 张磊,杨帆,李超飞,赵增鹏,张子文. 宁波地面沉降的短基线集监测与分析. 测绘科学. 2017(12): 77-82 . 百度学术
42. 陈继伟,曾琪明,焦健,赵斌臣. Sentinel-1A卫星TOPS模式数据的SBAS时序分析方法——以黄河三角洲地区为例. 国土资源遥感. 2017(04): 82-87 . 百度学术
43. 王萍. 沉降观测技术在高层建筑施工中的应用. 建材与装饰. 2017(35): 19-20 . 百度学术
44. 史秀保,徐宁,温浩,李春进. 一种小基线地表形变监测精度评价方法. 测绘通报. 2016(08): 70-73+91 . 百度学术
45. 于丹,杨子玉,庄岩,于均园. 时序分析法在沈阳地铁二号线变形预测的应用. 沈阳建筑大学学报(自然科学版). 2016(03): 453-458 . 百度学术
46. 王霖郁,李辉. 一种枝切法和质量图相结合的InSAR相位解缠算法. 应用科技. 2016(05): 49-53 . 百度学术
其他类型引用(25)