Application of Remote Sensing Technology in Earthquake-Induced Building Damage Detection
-
摘要: 建筑物损毁信息提取作为震后损失评估的重要内容,对于及时了解灾情、开展灾害应急响应及灾后恢复重建等具有重要意义。近年来,多平台遥感技术和高分辨率遥感技术的飞速发展为建筑物损毁信息的精确提取带来新的发展机遇。在介绍建筑物损毁基本特征和分级标准的基础上,总结了目前国内外遥感技术在建筑物损毁检测方面的常见方法,包括基于震后单时相的提取方法、灾前灾后的变化检测方法以及融合多源数据的建筑物损毁信息检测方法,并分析了各种方法本身的局限性与不足。结合目前遥感领域的前沿技术,探讨了如何基于高分辨率遥感技术、合成孔径雷达技术、机载激光雷达技术以及倾斜摄影技术实现震后建筑物损毁信息的提取。Abstract: As one important part of post-earthquake loss assessment, building damage detection has important significance for understanding the disaster in time, implementing the emergency response, and post-disaster reconstructing. In recent years the development of the multi-platform remote sensing and the high-resolution remote sensing technology have provided opportunities to building damage detection with high accuracy. In this paper, firstly, the basic building damage characteristics and the concrete classification criteria are introduced. Then, the common damage detection methods at home and abroad based on the remote sensing technology are concluded, including the single-temporal image detection of the post-earthquake, the change detection between the pre-earthquake and the post-earthquake images, and the damage detection based on the multi-sources data. Limitations and drawbacks of these methods are proposed. Finally, combining with some cutting-edge technologies in remote sensing domain, the latest research progress of building damage detection based on the high-resolution remote sensing technology, synthetic aperture radar technology, light detection and ranging technology, and oblique aerial photography technology are summarized in detail.
-
纵观城市形成的历史进程,道路网作为一种公共框架约束着城市形态和人类行为。作为城市系统的子系统,道路网被认为是城市的“指纹”[1],路网模式反映了城市道路的分布特点,影响着城市的结构和组织,蕴含着大量城市形成和演变的内在机制。由于城市系统本身的复杂性,路网模式在不同的领域都有不同的分类体系[2]。从研究载体上来看,路网模式识别方法可以分为基于面(网眼)的和基于线的识别方法。
Heinzle等[3-4]基于图论对路网模式进行了系列研究,通过网眼中心的排列来识别网格模式;利用统计指标(Tukey深度值)和形态指标(仿射不变量)识别环状模式。田晶等[5-6]结合机器学习算法识别网格模式。Yang等[7]结合形态学指标和多指标评价提出了一种探测和量化网格模式的方法。Louf等[1]通过计算所有网眼的几何和拓扑信息得到城市的类型分布图来区分不同的城市。基于网眼的识别方法,以一种全局的观点将网眼作为抽象采样点对其进行统计描述,而忽略网眼内部的道路弧段的几何和拓扑特征。在构建网眼时也会丢失部分弧段的链接信息。
Heinzle等[3]通过霍夫变换识别直线,相交识别网格模式。Heinzle等[8]通过Dijkstra算法探测延伸道路识别放射模式。Porta等[9]将空间句法理论及中心度量度结合分析城市路网拓扑模式,并得出网格模式在城市中是普遍存在的结论。Xie等[10]对路网构图,借助信息熵的概念来区别不同结构的道路网络。Jiang等[11-13]利用空间句法和复杂网络等理论研究和定义了城市的拓扑结构。基于线的识别方法,直接以道路弧段作为基本单元,着眼于线性扩展和局部的图形结构分析,而缺少全局的上下文环境分析,例如相邻区域内的弧段拓扑结构、节点分布统计特征和相邻区域边的排列组织等。
根据格式塔认知原则,首先将目标作为一个整体获得完整的模式,继而对组成目标的细节进行分析[14]。基于面的方法用一种全局观念,以统计分析的方法进行模式识别;而基于线的方法以一种局部的图形结构分析实现模式探测。本文尝试将这两种方法中的有益思想综合,先给出一种图结构上的场模型,在线性结构上实施统计分析,然后以局部结构的特征分析实现网格模式识别。
1 网络空间栅格化
使用形态单一的线性栅格单元剖分网络空间已成为基于网络环境的空间分析的重要方法[15-18]。本文将此思想引入到路网模式识别中。定义道路交叉点和不同等级道路的分界点等特征点为网络节点,利用节点分割道路生成道路弧段,将道路网的每一条弧段都用相同的栅格单元进行剖分,构造节点-弧段、栅格单元-栅格单元和节点-栅格单元拓扑关系,建立网络剖分数据结构。
剖分粒度的细化对应着算法时间复杂度的增长[19],适当的剖分粒度取决于应用环境及路网弧段的长度。Ai等[15]提出剖分粒度可以参考网络边的平均长度设定,网络边的平均长度越大,剖分粒度越大;She等[16]使用平均长度对道路网络进行剖分并证明其合理性,并指出由于实际路网中可能存在小于设定的剖分粒度的边,最终得到的剖分结构并不是严格相等的。本文将参考此方案进行网络空间栅格化剖分粒度的确定。
本文将道路网视为嵌在2D空间中的独立空间,如图 1所示,在对象空间将道路网络空间剖分成连续分布的线性栅格单元组成的场模型。对原始数据的矢量运算转换成叠置、扩展及关系探测等地图代数运算。将模式定义为相邻栅格单元或相邻区域特征值上相互关系的表征。通过计算栅格单元邻域的拓扑和几何特征,得到栅格单元的特征向量。空间内的每一个位置都对应由一组特征值组成的特征向量,由此构建模式识别空间向量场[20-21]。本文使用监督分类的二值分类器支持向量机(support vector machine, SVM),提取网格模式的栅格单元。并利用邻近性、相似性和闭合性格式塔原则对实验结果进行完善。
2 基于向量剖分法识别网格模式
2.1 网格模式典型特征提取
在剖分粒度确定的情况下,特征提取时选取的邻域大小将直接和尺度相关。O'Sullivan等[22]认为应邻域大小应根据研究对象的特性决定。Porta等[9]和She等[16]建议根据街道尺度来确定邻域大小。本文将邻域大小作为一个可控参数,参考了图像处理中对窗口大小选择的建议,首先对数据中的目标网格的尺寸进行预判,从而设定一个邻域大小的选择范围。
网格模式是由一系列满足一定统计特征(包括几何和拓扑等)的相邻栅格单元组成的区域结构,各栅格单元在两个近似正交的方向上满足特定的排列方式。向量剖分法将其特征量化为五个指标,即方向分布指数、正交指数、隶属度、延展指数、结构指数。
(1) 方向分布指数
剖分后的栅格单元具有特定的方向,以正东作为初始方向,逆时针旋转的角度来表示栅格单元的方向。为了方便计算,将角度取值范围[0°, 180º]对18个区间, 以[1, 18]对18个区间编号,栅格单元的角度值将以其所在区间的序号代替。统计目标栅格单元邻域内所有栅格单元的角度值,得到方向分布统计图(图 2(c))。理想网格路网的方向统计图应表现为在两个区间上有聚集性(图 2(d))。本文定义方向分布指数,衡量栅格单元邻域内方向分布的双向聚集性,设置距离权重为将实际的方向分布空间映射到理想网格空间的距离的倒数。假设两个聚集方向区间序号记为a和b,区间j的权重为ωj,角度值落在区间j内的概率为pj。
$$ {\omega _j} = \max \left( {\frac{1}{{\left| {j -a} \right|}}, \frac{1}{{\left| {j -b} \right|}}} \right), {\omega _j} \in \left( {0, 1} \right] $$ (1) 式中,当j = a或b时,ωj=1。栅格单元i的方向分布指数Di为:
$$ {D_i} = \sum\nolimits_{j = 1}^{18} {{\omega _j}} \cdot {p_j},{D_i} \in {\rm{ }}\left( 0 \right.\left. {,1} \right] $$ (2) Di越大,目标栅格单元邻域的双向聚集性越强,被分类为网格模式的可能性越大。从表 1中看出,DA<DB,栅格单元A所处的环境中干扰单元即偏离两峰值方向的单元所占的比例比栅格单元B大(图 2(a), 2(b))。
表 1 栅格单元A、B指标统计Table 1. Indexes Values of Element A and Element BD V M G T A 0.907 69 1 0.2 0.842 7 0.62 B 0.960 97 1 1.0 0.663 4 0.89 (2) 正交指数
为了判断栅格单元的邻域内两个聚集方向是否近似正交,定义正交指数Vi为:
$$ {V_i} = \sin \left( {\left| {b - a} \right| \cdot \frac{{\rm{ \mathsf{ π} }}}{{18}}} \right), {V_i} \in \left[{0, 1} \right] $$ (3) Vi越大,目标栅格单元的邻域呈现出正交分布的可能性越大,在其他条件相同的情况下,也更容易被分类为网格模式。表 1中,栅格单元A和B的正交指数均为1,从图 2中来看,栅格单元A和B所处的邻域环境多为水平与竖直方向分布的栅格单元。
(3) 隶属度
当栅格单元所处的环境满足网格模式的方向分布时,仍需判断栅格单元自身是否偏离聚集方向而属于噪声单元。定义隶属度指标Mi为:
$$ {M_i} = \max \left( {\frac{1}{{\left| {j -a} \right|}}, \frac{1}{{\left| {j -b} \right|}}} \right), {M_i} \in \left( {0, 1} \right] $$ (4) 式中,当j=a或b时,Mi=1。在图 2(a)和2(b)中,栅格单元A的方向处于偏离正交方向的区间,其隶属度只有0.2(表 1)。栅格单元B则正好处于聚集区间,隶属度为1。
(4) 延展指数
网格模式下栅格单元呈现线性延展的特性,如图 3(a)中所示的蜿蜒排列和直线排列的对比。虽然网络扩展距离相同,但由于欧氏距离的差别,两条路径展现出截然不同的延展程度。定义延展指数Gi为:
$$ {G_i} = \frac{{\sum\nolimits_{j = 0}^{m - 1} {{E_{di{s_{ij}}}}} }}{{\sum\nolimits_{j = 0}^{m - 1} {{N_{di{s_{ij}}}}} }}, {G_i} \in \left[{0, 1} \right] $$ (5) Edisij为目标单元i中点到延展终点单元中点ij的欧式距离,$ {E_{di{s_{ij}}}} = \sqrt {{{\left( {{x_i} - {x_{ij}}} \right)}^2} + {{\left( {{y_i} - {y_{ij}}} \right)}^2}} $。Ndisij为相应的网络距离,Ndisij=Nij×lgapdis,Nij为目标单元i到延展终点单元中点ij之间的单元个数,lgapdis为剖分粒度。且目标单元i共有m个延展终点。
Gi值越大,邻域环境越松弛,延展性越好;相反,邻域环境越紧凑。参考表 1,GA<GB,相对于栅格单元B,栅格单元A所处的邻域环境较松散,且延展性较好。
(5) 结构指数
将构成网格的特征单元集合成两类,第一类栅格单元为骨架单元,一阶邻接度大于2,构成网格的骨架特征;第二类为连接单元,一阶邻接度小于等于2,连接骨架单元。
设共有m个扩展终点,统计每个扩展方向上的骨架栅格个数,记作CjS,每个方向上的栅格个数Cj,定义结构指数Ti为:
$$ {T_i} = \frac{{\sum\nolimits_{j = 1}^m {\frac{{C_j^S}}{{{C_j}}}} }}{m}, {T_i} \in \left[{0, 1} \right] $$ (6) 结构指数Ti的意义为平均每一个方向上扩展Ti步可以遇到一个骨架栅格。该指标决定了网格的尺寸和链接方式,同时也可以排除道路中的大枝杈(图 4(a))。Ti越大,则该栅格单元邻域内包含的网格骨架结构越多,可能包含的网格密度越大。参考表 1,栅格单元B的邻域环境所包含的骨架结构要多于栅格单元A,栅格单元B邻域的网格密度更高。
2.2 基于SVM的模式分类
由于路网数据量较大且复杂程度较高,在分类时,变量之间可能具有相关性和冲突性,难以对各指标设置单一阈值。本文采用SVM根据路网数据特征自动综合各个指标实现分类。SVM分类由软件包libsvm完成[23]。分类步骤如下。
(1) 将§2.1中提出的五个特征值的取值范围控制在[0, 1]之间,防止取值范围大的指标削弱取值范围较小的指标的作用。
(2) 选用径向基核函数(radial basis function, RBF),RBF常用于非线性分类,相较多项式核函数所设参数较少(惩罚因子C和核参数γ),可以有效降低模型复杂度。
(3) 为防止过拟合,对训练样本进行十折交叉验证,确定模型最佳参数。
(4) 采用步骤(3)确定的最佳参数所构建的分类模型对测试样本进行模式分类。
2.3 基于格式塔的图形补全和枝杈修剪
由于研究对象(栅格单元)与研究目标(网格)的不同和分类器精度的影响,难以保证分类结果的完善性。为了提高正确率,本文根据格式塔原则中的邻近性、相似性和闭合性对SVM分类结果进行优化。首先将与网格模式相邻的符合要求的背景单元合并到网格模式中,使边界向外部扩张;然后消除悬挂的边界单元,使边界向内部收缩。设定规则为:假设被识别为隶属网格模式的栅格单元记为Egrid,其他单元记为Enon_grid。
(1) 建立一个队列,将已经识别出来的栅格单元Egrid入队,取出队首单元,如果其邻接单元为Enon_grid,计算夹角AEgrid_iEnon_grid,并将夹角值记录给Enon_grid,设定阈值为10°。
$$ {A_{{{\rm{E}}_{{\rm{grid\_i}}}}{{\rm{E}}_{{\rm{non\_grid}}}}}} = \left| {{\theta _{{E_{{\rm{grid}}\_i}}}} - {\theta _{{E_{{\rm{non\_grid}}}}}}} \right| + {\theta _{{\rm{accum}}\_i}} $$ (7) 式中,θaccum_i为由SVM识别出的原始网格扩展到栅格单元i的累积夹角值。当AEgrid_iEnon_grid小于阈值时,将其类别改为Egrid,并将其入队。重复以上过程,直至队列为空。
(2) 遍历所有栅格单元,将Egrid存入链表。遍历链表的每一个元素,当其连接的Egrid个数小于2或者只在一侧有邻接单元,则将其类别改为Enon_grid;重复以上过程,直到链表元素的类别不再变化。
由于优化过程需要两次遍历所有的栅格单元,假设共有n个栅格单元,则图形补全和枝杈修剪的时间复杂度是O(2n)。
3 路网网格模式识别
本文使用Python实现路网网格模式识别的实验系统,在i5-2640 m/2.8 GHZ/4 G/Wind-ows7的环境下,选用中国深圳市1: 10 000比例尺的道路网数据作为实验数据。对数据进行必要的预处理,删除立交桥,对道路进行拓扑检查,删除伪节点,并在交叉点处打断。预处理后深圳市道路网弧段平均长度为308 m,采用300 m的栅格单元剖分道路网。预判出网格尺寸的端点值为4步和12步,参考此范围,本文采用10步邻域。
图 5中,训练样本区域(图 7中蓝色矩形框内)内道路细节较为丰富,包含不同分布范围和不同排列方式的网格模式,同时具有大枝杈和大弯曲类型的道路。通过交叉验证达到的最大模型训练正确率为85%。将训练得到的模型用于测试样本,截取深圳市福田区的一块区域观察识别结果的细节变化,SVM分类结果不能保证网格模式边缘的完整性(图 6(a)),经过图形补全即膨胀操作后(图 6(b)),网格模式的边界向外扩张,最后通过枝杈修剪减掉毛糙的枝杈(图 6(c))。将测试样本的最终识别结果与目视判别选取的网格模式相比,以正确分类的网格栅格单元个数与目视判别网格栅格单元个数的比值计算正确率,以正确分类的网格栅格单元个数与向量剖分法识别出的网格栅格单元个数的比值计算召回率。向量剖分法识别网格模式的正确率达到91.30%,召回率达到82.91%。
为了对比向量剖分法与传统方法的识别效率,本研究将Yang等[7]和Heinzle等[8]提出的两种经典算法作为参考,识别结果如图 8所示。据表 2可以发现,向量剖分法在召回率相差较小的情况下,取得了更高的正确率。召回率相对较低,这和样本选择相关,由于城市路网本身的复杂性,样本选择会丢失一定的信息。从识别结果细节特征来看,如图 7、图 8中方框I中所示,对于阶梯状模式,向量剖分法能够很好的排除,而两组对比实验由于不考虑上下文,使得误将其分为网格模式。而对于方框II中显示的复杂节点连接组成的网格模式,Heinzle等[8]的方法不能有效识别。
4 结语
本文提出向量剖分法识别网格模式,该方法以路网栅格化处理后的栅格单元为基本单元,以邻域特征描述栅格单元,结合SVM和格式塔原则实现分类。向量剖分法从整体上把握道路网模式具有空间认知的一览性,识别方法上建立一种新的空间认知归纳思维,将统计分析与局部图形的结构分析统一应用于空间剖分后的栅格单元,所得到的分类结果在更细节的层面上取得了更高的正确率。此外,本方法需要设定的参数意义明确,可以通过对参数的设置自适应地满足实验区域和数据尺度的需求。
进一步的研究工作将从理论体系上利用向量剖分法构建识别其他路网模式(放射模式和环模式)的模型;从方法应用上尝试将本文提出的方法应用于道路网选取和更新,以及城市功能区的辅助识别。
-
[1] Jin D, Wang X, Dou A, et al. Post-Earthquake Building Damage Assessment in Yushu Using Airborne SAR Imagery[J]. Earthquake Science, 2011, 24(5):463-473 doi: 10.1007/s11589-011-0808-0
[2] Uprety P, Yamazaki F. Use of High-Resolution SAR Intensity Images for Damage Detection from the 2010 Haiti Earthquake[C]. Geoscience & Remote Sensing Symposium IEEE, Munich, Germany, 2012
[3] 王晓青, 丁香, 王龙, 等.四川汶川8级大地震灾害损失快速评估研究[J].地震学报, 2009, 31(2):205-211 doi: 10.3321/j.issn:0253-3782.2009.02.010 Wang Xiaoqing, Ding Xiang, Wang Long, et al. A Study on Fast Earthquake Loss Assessment and Its Application to 2008 Wenchuan Ms8 Earthquake[J]. Acta Seismologica Sinica, 2009, 31(2):205-211 doi: 10.3321/j.issn:0253-3782.2009.02.010
[4] 王丽涛.青海玉树地震灾情遥感应急监测分析[J].遥感学报, 2010, 14(5):1 053-1 066 http://d.old.wanfangdata.com.cn/Periodical/ygxb201005017 Wang Litao. Urgent Monitoring and Analysis on Yushu Earthquake Using Remote Sensing[J]. Journal of Remote Sensing, 2010, 14(5):1 053-1 066 http://d.old.wanfangdata.com.cn/Periodical/ygxb201005017
[5] Chang L. Use of High-Resolution FORMOSAT-2 Satellite Images for Post-Earthquake Disaster Assessment: A Study Following the 12 May 2008 Wenchuan Earthquake[J]. International Journal of Remote Sensing, 2010, 31(13):3 355-3 368 doi: 10.1080/01431161003727655
[6] Xu Z, Yang J, Peng C, et al. Development of an UAS for Post-Earthquake Disaster Surveying and Its Application in Ms7.0 Lushan Earthquake, Sichuan, China[J]. Computers & Geosciences, 2014, 68:22-30 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=188325eba06497b895e9a864c86920a8
[7] 李强, 张景发.不同特征融合的震后损毁建筑物识别研究[J].地震研究, 2016, 39(3):486-493 doi: 10.3969/j.issn.1000-0666.2016.03.018 Li Qiang, Zhang Jingfa. Research on Earthquake Damaged Building Extraction by Different Features Fusion[J]. Journal of Seismological Research, 2016, 39(3):486-493 doi: 10.3969/j.issn.1000-0666.2016.03.018
[8] 赵福军.遥感影像震害信息提取技术研究[D].哈尔滨: 中国地震局工程力学研究所, 2010 http://cdmd.cnki.com.cn/article/cdmd-85406-2010167509.htm Zhao Fujun. Seismic Disaster Information Extraction from Remotely Sensed Imagery[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2010 http://cdmd.cnki.com.cn/article/cdmd-85406-2010167509.htm
[9] 陶和平, 刘斌涛, 刘淑珍, 等.遥感在重大自然灾害监测中的应用前景——以5·12汶川地震为例[J].山地学报, 2008, 26(3):276-279 doi: 10.3969/j.issn.1008-2786.2008.03.005 Tao Heping, Liu Bintao, Liu Shuzhen, et al. Natural Hazards Monitoring Using Remote Sensing—A Case Study of 5·12 Wenchuan Earthquake[J]. Journal of Mountain Science, 2008, 26(3):276-279 doi: 10.3969/j.issn.1008-2786.2008.03.005
[10] 杨必胜, 李健平.轻小型低成本无人机激光扫描系统研制与实践[J].武汉大学学报·信息科学版, 2018, 43(12): 1 972-1 978 http://ch.whu.edu.cn/CN/abstract/abstract6280.shtml Yang Bisheng, Li Jianping. Implementation of a Low-Cost Mini-UAV Laser Scanning System[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1 972-1 978 http://ch.whu.edu.cn/CN/abstract/abstract6280.shtml
[11] 朱建章, 石强, 陈凤娥, 等.遥感大数据研究现状与发展趋势[J].中国图象图形学报, 2016, 21(11):1 425-1 439 http://d.old.wanfangdata.com.cn/Periodical/zgtxtxxb-a201611002 Zhu Jianzhang, Shi Qiang, Chen Feng'e, et al. Research Status and Development Trends of Remote Sensing Big Data[J]. Journal of Image and Graphics, 2016, 21(11):1 425-1 439 http://d.old.wanfangdata.com.cn/Periodical/zgtxtxxb-a201611002
[12] Pan Gang, Tang Danling. Damage Information Derived from Multi-sensor Data of the Wenchuan Earthquake of May 2008[J]. International Journal of Remote Sensing, 2010, 31(13):3 509-3 519 doi: 10.1080/01431161003730865
[13] 董燕生, 潘耀忠, 方伟华, 等.基于面向对象技术的建筑物震害识别方法研究[J].地震研究, 2011, 34(3):372-377 doi: 10.3969/j.issn.1000-0666.2011.03.020 Dong Yansheng, Pan Yaozhong, Fang Weihua, et al. Recognition of the Earthquake-Damaged Buil-dings Based on Object-Oriented Technology[J].Journal of Seismological Research, 2011, 34(3):372-377 doi: 10.3969/j.issn.1000-0666.2011.03.020
[14] Wang D, Lihong X U. Extraction Technology of Remote Sensing Information on Building Damage: A Case Study of Ms8.1 Nepal Earthquake[J]. Journal of Natural Disasters, 2016, 25(3):124-129
[15] 邵芸, 赵忠明, 黄富祥, 等.天空地协同遥感监测精准应急服务体系构建与示范[J].遥感学报, 2016, 20(6):1 485-1 490 http://d.old.wanfangdata.com.cn/Periodical/ygxb201606018 Shao Yun, Zhao Zhongming, Huang Fuxiang, et al. Precise Emergency Service System Construction and Demonstration Through Synergy Observation of Spaceborne, Airborne, and Ground Remote Sensing[J]. Journal of Remote Sensing, 2016, 20(6):1 485-1 490 http://d.old.wanfangdata.com.cn/Periodical/ygxb201606018
[16] 陆程, 孙建延.基于遥感技术进行震害评估的研究进展[J].中州大学学报, 2011, 28(1):114-117 doi: 10.3969/j.issn.1008-3715.2011.01.037 Lu Cheng, Sun Jianyan. A Survey on Remote Sensing Technology in Post-Earthquake Damage Assessment[J]. Journal of Zhongzhou University, 2011, 28(1):114-117 doi: 10.3969/j.issn.1008-3715.2011.01.037
[17] 王玉娴, 段建波, 刘士彬, 等.基于众包的遥感灾害监测与评估模型[J].国土资源遥感, 2017, 29(2):104-109 http://d.old.wanfangdata.com.cn/Periodical/gtzyyg201702015 Wang Yuxian, Duan Jianbo, Liu Shibin, et al. Remote Sensing Disaster Monitoring and Evaluation Model Based on Crowdsourcing[J]. Remote Sensing for Land & Resources, 2017, 29(2):104-109 http://d.old.wanfangdata.com.cn/Periodical/gtzyyg201702015
[18] Tu J, Sui H, Feng W, et al. Automatic Building Damage Detection Method Using High-Resolution Remote Sensing Images and 3D GIS Model[J]. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, 2016, 3(8): 43-50 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004683803
[19] Vetrivel A, Gerke M, Kerle N, et al. Identification of Structurally Damaged Areas in Airborne Oblique Images Using a Visual-Bag-of-Words Approach[J]. Remote Sensing, 2016, 8(3):231-253 doi: 10.3390/rs8030231
[20] Duarte D, Nex F, Kerle N, et al. Multi-resolution Feature Fusion for Image Classification of Building Damages with Convolutional Neural Networks[J]. Remote Sensing, 2018, 10(10): 1 636-1 662 doi: 10.3390/rs10101636
[21] 刘莹, 李强.融合多特征的高分辨率遥感影像震害损毁建筑物检测[J].测绘与空间地理信息, 2018, 41(6):61-64 doi: 10.3969/j.issn.1672-5867.2018.06.019 Liu Ying, Li Qiang. Damaged Building Detection from High Resolution Remote Sensing Images by Integrating Multiple Features[J]. Geomatics & Spatial Information Technology, 2018, 41(6):61-64 doi: 10.3969/j.issn.1672-5867.2018.06.019
[22] 曹代勇, 施先忠, 张景发.遥感图像中建筑物震害信息统计特征研究[J].国土资源遥感, 2001, 13(1):42-46 doi: 10.3969/j.issn.1001-070X.2001.01.008 Cao Daiyong, Shi Xianzhong, Zhang Jingfa. Study on the Statistical Characteristics of Seismic Disaster Information of Building in Remote Sensing Image[J]. Remote Sensing for Land & Resources, 2001, 13(1):42-46 doi: 10.3969/j.issn.1001-070X.2001.01.008
[23] 李强, 任宏旭, 眭海刚, 等.基于三维特征的遥感影像震害房屋损毁评估[J].地理空间信息, 2017, 15(10):63-66, 69 doi: 10.3969/j.issn.1672-4623.2017.10.020 Li Qiang, Ren Hongxu, Sui Haigang, et al. Damage Assessment of Earthquake-Damaged Houses Based on Three-Dimensional Features[J]. Geospatial Information, 2017, 15(10):63-66, 69 doi: 10.3969/j.issn.1672-4623.2017.10.020
[24] 中国建筑科学研究院. GB 50011—2010建筑抗震设计规范[S].北京: 中国建筑工业出版社, 2010 China Academy of Building Research. GB 50011—2010 Code for Seismic Design of Buildings[S]. Beijing: China Architecture & Building Press, 2010
[25] 贺思维.灾害作用下单体建筑的功能损失评估方法研究[D].哈尔滨: 中国地震局工程力学研究所, 2017 http://cdmd.cnki.com.cn/Article/CDMD-85406-1017276506.htm He Siwei. Research on Evaluation Method of Functional Loss of Single Building Under Disaster[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2017 http://cdmd.cnki.com.cn/Article/CDMD-85406-1017276506.htm
[26] Grunthal G. EMS-98 European Macroseismic Scale 1998[S]. Luxembourg: European Seismological Commission, 1998
[27] 中国地震局. GB/T 24335-2009建(构)筑物地震破坏等级划分[S].北京: 中国标准出版社, 2009 China Earthquake Administration. GB/T 24335—2009 Classification of Earthquake Damage to Buil-dings and Special Structures[S]. Beijing: Standards Press of China, 2009
[28] Corbane C, Saito K, Dell'Oro L, et al. A Comprehensive Analysis of Building Damage in the January 12, 2010 Mw7 Haiti Earthquake Using High-Resolution Satellite and Aerial Imagery[J]. Photogrammetric Engineering & Remote Sensing, 2011, 77(10):997-1 009 https://www.researchgate.net/profile/David_Lallemant/publication/266908454_A_Comprehensive_Analysis_of_Building_Damage_in_the_12_January_2010_Mw7_Haiti_Earthquake_Using_High-Resolution_Satelliteand_Aerial_Imagery/links/54dcfec80cf25b09b912e534.pdf?inViewer=true&pdfJsDownload=true&disableCoverPage=true&origin=publication_detail
[29] Gerke M, Kerle N. Automatic Structural Seismic Damage Assessment with Airborne Oblique Pictometry Imagery[J]. Photogrammetric Engineering & Remote Sensing, 2011, 77(9):885-898 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c5632efdcfe7cd8850facfc3694fe0a9
[30] 王晓青, 黄树松, 丁香, 等.尼泊尔8.1级地震建筑物震害遥感提取与分析[J].震灾防御技术, 2015, 10(3): 481-490 http://d.old.wanfangdata.com.cn/Periodical/zzfyjs201503001 Wang Xiaoqing, Huang Shusong, Ding Xiang, et al. Extraction and Analysis of Building Damage Caused by Nepal Ms8.1 Earthquake from Remote Sensing Images[J]. Technology for Earthquake Disaster Prevention, 2015, 10(3): 481-490 http://d.old.wanfangdata.com.cn/Periodical/zzfyjs201503001
[31] 金鼎坚, 王晓青, 窦爱霞, 等.雷达遥感建筑物震害信息提取方法综述[J].遥感技术与应用, 2012, 27(3):449-457 http://d.old.wanfangdata.com.cn/Periodical/zncs201803028 Jin Dingjian, Wang Xiaoqing, Dou Aixia, et al. A Review on the Methods of Earthquake-Induced Building Damage Information Extraction from SAR Images[J]. Remote Sensing Technology and Application, 2012, 27(3):449-457 http://d.old.wanfangdata.com.cn/Periodical/zncs201803028
[32] 刘莹, 陶超, 闫培, 等.图割能量驱动的高分辨率遥感影像震害损毁建筑物检测[J].测绘学报, 2017, 46(7):910-917 http://d.old.wanfangdata.com.cn/Periodical/chxb201707014 Liu Ying, Tao Chao, Yan Pei, et al. Graph Cut Energy Driven Earthquake-Damaged Building Detection from High Resolution Remote Sensing Images[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(7):910-917 http://d.old.wanfangdata.com.cn/Periodical/chxb201707014
[33] 范一大, 吴玮, 王薇, 等.中国灾害遥感研究进展[J].遥感学报, 2016, 20(5):1 170-1 184 http://d.old.wanfangdata.com.cn/Periodical/ygxb201605039 Fan Yida, Wu Wei, Wang Wei, et al. Research Progress of Disaster Remote Sensing in China[J]. Journal of Remote Sensing, 2016, 20(5):1 170-1 184 http://d.old.wanfangdata.com.cn/Periodical/ygxb201605039
[34] Matsuoka M, Yamazaki F. Use of Satellite SAR Intensity Imagery for Detecting Building Areas Damaged Due to Earthquakes[J]. Earthquake Spectra, 2004, 20(3):975-994 doi: 10.1193/1.1774182
[35] 王东明, 许立红.破坏建筑物遥感信息提取技术——以尼泊尔8.1级地震为例[J].自然灾害学报, 2016, 25(3):124-129 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzhxb201603014 Wang Dongming, Xu Lihong. Extraction Technology of Remote Sensing Information on Building Damage: A Case Study of Ms8.1 Nepal Earthquake[J]. Journal of Natural Disasters, 2016, 25(3):124-129 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzhxb201603014
[36] 叶昕, 秦其明, 王俊, 等.利用高分辨率光学遥感图像检测震害损毁建筑物[J].武汉大学学报·信息科学版, 2019, 44(1): 125-131 http://ch.whu.edu.cn/CN/abstract/abstract6340.shtml Ye Xin, Qin Qiming, Wang Jun, et al. Detecting Damaged Buildings Caused by Earthquake from Remote Sensing Image Using Local Spatial Statistics Method[J]. Geomatics and Information Science of Wuhan University, 2019, 44(1): 125-131 http://ch.whu.edu.cn/CN/abstract/abstract6340.shtml
[37] 杜建晓.基于形态学和分类的倒塌建筑物提取研究与实现[D].青岛: 山东科技大学, 2015 http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2924280 Du Jianxiao. Study of Collapsed Buildings Extraction Based on Mrophology and Classification and Implementation[D]. Qingdao: Shandong University of Science and Technology, 2015 http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2924280
[38] 张德成.建筑物震害航空照片目视判读标志的初步研究[J].地震, 1993(1):26-30 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000214185 Zhang Decheng. Preliminary Study on Visual Interpretation Marks of Building Damages Caused by Earthquakes on Aerophotograph[J]. Earthquake, 1993(1):26-30 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000214185
[39] Balz T, Liao M. Building-Damage Detection Using Post-Seismic High-Resolution SAR Satellite Data[J]. International Journal of Remote Sensing, 2010, 31(13): 3 369-3 391 doi: 10.1080/01431161003727671
[40] Cusicanqui J, Kerle N, Nex F. Usability of Aerial Video Footage for 3-D Scene Reconstruction and Structural Damage Assessment[J]. Natural Hazards and Earth System Sciences, 2018, 18(6): 1 583-1 598 doi: 10.5194/nhess-18-1583-2018
[41] Vetrivel A, Gerke M, Kerle N, et al. Disaster Damage Detection Through Synergistic Use of Deep Learning and 3D Point Cloud Features Derived from Very High Resolution Oblique Aerial Images, and Multiple-Kernel-Learning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 140: 45-59 doi: 10.1016/j.isprsjprs.2017.03.001
[42] 胡本刚.基于LiDAR点云与高分影像的面向对象的损毁建筑物提取方法研究[D].成都: 西南交通大学, 2013 http://cdmd.cnki.com.cn/Article/CDMD-10613-1013250368.htm Hu Bengang. Object-Oriented Damage Building Extraction Based on LiDAR and High Resolution Remote Sensing Imagery[D]. Chengdu: Southwest Jiaotong University, 2013 http://cdmd.cnki.com.cn/Article/CDMD-10613-1013250368.htm
[43] Turker M, Sumer E. Building-Based Damage Detection Due to Earthquake Using the Watershed Segmentation of the Post-Event Aerial Images[J]. International Journal of Remote Sensing, 2008, 29(11):3 073-3 089 doi: 10.1080/01431160701442096
[44] Dong L, Shan J. A Comprehensive Review of Earthquake-Induced Building Damage Detection with Remote Sensing Techniques[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 84:85-99 doi: 10.1016/j.isprsjprs.2013.06.011
[45] 郭华东, 鹿琳琳, 马建文, 等.一种改进的地震灾害倒塌房屋遥感信息自动识别方法[J].科学通报, 2009, 54(17):2 581-2 585 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb200917023 Guo Huadong, Lu Linlin, Ma Jianwen, et al. An Improved Method for Automatically Identifying Remote Sensing Information of Earthquake Disaster Collapsed Houses[J]. Chinese Science Bulletin, 2009, 54(17):2 581-2 585 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb200917023
[46] 吴鹏天昊, 吴立新, 沈永林, 等.基于高分影像纹理分维变化的灾害自动识别方法[J].地理与地理信息科学, 2012, 28(2): 9-13 http://d.old.wanfangdata.com.cn/Periodical/dlxygtyj201202003 Wu Pengtianhao, Wu Lixin, Shen Yonglin, et al. Disaster Auto-recognition Method Based on HSR-Image's Texture Fractal Monotonous Change[J]. Geography and Geo-Information Science, 2012, 28(2): 9-13 http://d.old.wanfangdata.com.cn/Periodical/dlxygtyj201202003
[47] 李祖传, 马建文, 张睿, 等.利用融合纹理与形态特征进行地震倒塌房屋信息自动提取[J].武汉大学学报·信息科学版, 2010, 35(4): 446-450 http://ch.whu.edu.cn/CN/abstract/abstract901.shtml Li Zuchuan, Ma Jianwen, Zhang Rui, et al. Extracting Damaged Buildings Information Automatically Based on Textural and Morphological Features[J]. Geomatics and Information Science of Wuhan University, 2010, 35(4): 446-450 http://ch.whu.edu.cn/CN/abstract/abstract901.shtml
[48] 刘宇, 曹国, 周丽存, 等.基于多特征结合的损毁建筑物检测[J].计算机应用, 2015, 35(9):2 652-2 655 http://d.old.wanfangdata.com.cn/Periodical/jsjyy201509047 Liu Yu, Cao Guo, Zhou Licun, et al. Building-Damage Detection Based on Combination of Multi-features[J]. Journal of Computer Applications, 2015, 35(9):2 652-2 655 http://d.old.wanfangdata.com.cn/Periodical/jsjyy201509047
[49] 王慧敏, 李艳.面向对象的损毁建筑物提取[J].遥感信息, 2011(5):81-85 doi: 10.3969/j.issn.1000-3177.2011.05.014 Wang Huimin, Li Yan. Object-Oriented Damage Building Extraction[J]. Remote Sensing Information, 2011(5):81-85 doi: 10.3969/j.issn.1000-3177.2011.05.014
[50] 吴剑, 陈鹏, 刘耀林, 等.震害损毁建筑物高分辨率遥感信息提取方法[J].地理与地理信息科学, 2013, 29(3): 35-38 http://d.old.wanfangdata.com.cn/Periodical/dlxygtyj201303008 Wu Jian, Chen Peng, Liu Yaolin, et al. Method of Earthquake Collapsed Building Information Extraction Based on High-Resolution Remote Sensing[J]. Geography and Geo-Information Science, 2013, 29(3): 35-38 http://d.old.wanfangdata.com.cn/Periodical/dlxygtyj201303008
[51] 涂继辉, 眭海刚, 冯文卿, 等.利用词袋模型检测建筑物顶面损毁区域[J].武汉大学学报·信息科学版, 2018, 43(5): 691-696 http://ch.whu.edu.cn/CN/abstract/abstract6041.shtml Tu Jihui, Sui Haigang, Feng Wenqing, et al. Detection of Damaged Areas Based on Visual Bag-of-Words Model from Aerial Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2018, 43(5): 691-696 http://ch.whu.edu.cn/CN/abstract/abstract6041.shtml
[52] Cha Y J, Choi W, Büyüköztürk O. Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(5): 361-378 doi: 10.1111/mice.2017.32.issue-5
[53] 陈启浩, 聂宇靓, 李林林, 等.极化分解后多纹理特征的建筑物损毁评估[J].遥感学报, 2017, 21(6):955-965 http://d.old.wanfangdata.com.cn/Periodical/ygxb201706014 Chen Qihao, Nie Yuliang, Li Linlin, et al. Buildings Damage Assessment Using Texture Features of Polarization Decomposition Components[J]. Journal of Remote Sensing, 2017, 21(6):955-965 http://d.old.wanfangdata.com.cn/Periodical/ygxb201706014
[54] Guo H, Li X, Zhang L. Study of Detecting Method with Advanced Airborne and Spaceborne Synthetic Aperture Radar Data for Collapsed Urban Buildings from the Wenchuan Earthquake Earthquake[J]. Journal of Applied Remote Sensing, 2009, 3(1):131-136 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=44df7cfb2d3e2454a6d5b2c6ab7d2a0e
[55] 刘云华, 屈春燕, 单新建, 等. SAR遥感图像在汶川地震灾害识别中的应用[J].地震学报, 2010, 32(2):214-223, 256 http://d.old.wanfangdata.com.cn/Periodical/dizhen201002009 Liu Yunhua, Qu Chunyan, Shan Xinjian, et al. Application of SAR Data to Damage Identification of the Wenchuan Earthquake[J]. Acta Seismologica Sinica, 2010, 32(2): 214-223, 256 http://d.old.wanfangdata.com.cn/Periodical/dizhen201002009
[56] Vu T T, Matsuoka M, Yamazaki F. LiDAR-Based Change Detection of Buildings in Dense Urban Areas[C]. IGARSS 2004, Anchorage, AK, USA, 2004 https://ieeexplore.ieee.org/abstract/document/1370438
[57] 王彩凤.利用机载LiDAR点云提取损毁建筑物的方法研究[D].成都: 西南交通大学, 2013 http://cdmd.cnki.com.cn/Article/CDMD-10613-1013249452.htm Wang Caifeng. Detection of Collapsed Building by Classifying Airborne Laser Scanner Data[D]. Chengdu: Southwest Jiaotong University, 2013 http://cdmd.cnki.com.cn/Article/CDMD-10613-1013249452.htm
[58] 程亮, 龚健雅. LiDAR辅助下利用超高分辨率影像提取建筑物轮廓方法[J].测绘学报, 2008, 37(3):391-393 doi: 10.3321/j.issn:1001-1595.2008.03.021 Cheng Liang, Gong Jianya. Building Boundary Extraction Using Very High Resolution Images and LiDAR[J]. Acta Geodaetica et Cartographica Sinica, 2008, 37(3):391-393 doi: 10.3321/j.issn:1001-1595.2008.03.021
[59] 邓非, 徐国杰, 冯晨, 等. LiDAR数据与航空影像结合的建筑物重建[J].测绘地理信息, 2010, 35(1):35-37 http://d.old.wanfangdata.com.cn/Periodical/chxxygc201001016 Deng Fei, Xu Guojie, Feng Chen, et al. Building Reconstruction Using LiDAR Data and Airborne Images[J]. Journal of Geomatics, 2010, 35(1):35-37 http://d.old.wanfangdata.com.cn/Periodical/chxxygc201001016
[60] 于海洋, 程钢, 张育民, 等.基于LiDAR和航空影像的地震灾害倒塌建筑物信息提取[J].国土资源遥感, 2011, 23(3): 77-81 http://d.old.wanfangdata.com.cn/Periodical/gtzyyg201103014 Yu Haiyang, Cheng Gang, Zhang Yumin, et al. The Detection of Earthquake-Caused Collapsed Building Information from LiDAR Data and Aerophotograph[J]. Remote Sensing for Land & Resources, 2011, 23(3): 77-81 http://d.old.wanfangdata.com.cn/Periodical/gtzyyg201103014
[61] 黄树松, 窦爱霞, 王晓青, 等.基于震后机载激光雷达点云的建筑物破坏特征分析[J].地震学报, 2016, 38(3):467-476 http://d.old.wanfangdata.com.cn/Periodical/dizhen201603014 Huang Shusong, Dou Aixia, Wang Xiaoqing, et al. Building Damage Feature Analyses Based on Post-Earthquake Airborne LiDAR Data[J]. Acta Seismologica Sinica, 2016, 38(3):467-476 http://d.old.wanfangdata.com.cn/Periodical/dizhen201603014
[62] 王金霞, 窦爱霞, 王晓青, 等.地震后机载LiDAR点云的地物区分方法研究[J].震灾防御技术, 2017, 12(3):677-689 http://d.old.wanfangdata.com.cn/Periodical/zzfyjs201703023 Wang Jinxia, Dou Aixia, Wang Xiaoqing, et al. The Ground-Objects Classification Based on Post-Earthquake Airborne LiDAR Data[J]. Technology for Earthquake Disaster Prevention, 2017, 12(3):677-689 http://d.old.wanfangdata.com.cn/Periodical/zzfyjs201703023
[63] Gerke M, Kerle N. Automatic Structural Seismic Damage Assessment with Airborne Oblique Pictometry Imagery[J]. Photogrammetric Engineering & Remote Sensing, 2011, 77(9):885-898 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c5632efdcfe7cd8850facfc3694fe0a9
[64] Tu J, Sui H, Feng W, et al. Detecting Facade Damage on Moderate Damaged Type from High-Resolution Oblique Aerial Images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(12): 5 598-5 607 doi: 10.1109/JSTARS.2017.2750170
[65] Wang Y, Schultz S, Giuffrida F. Pictometry's Proprietary Airborne Digital Imaging System and Its Application in 3D City Modelling[J]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2008, 37(B1): 1 065-1 070 http://www.cis.rit.edu/~cnspci/references/dip/urban_extraction/wang2008.pdf
[66] 曲林, 冯洋, 支玲美, 等.基于无人机倾斜摄影数据的实景三维建模研究[J].测绘与空间地理信息, 2015, 38(3):38-39 doi: 10.3969/j.issn.1672-5867.2015.03.013 Qu Lin, Feng Yang, Zhi Lingmei, et al. Study on Real 3-D Modeling of Photographic Data Based on UAV[J]. Geomatics & Spatial Information Technology, 2015, 38(3):38-39 doi: 10.3969/j.issn.1672-5867.2015.03.013
[67] Xiao J, Gerke M, Vosselman G. Building Extraction from Oblique Airborne Imagery Based on Robust Façade Detection[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 68: 56-68 doi: 10.1016/j.isprsjprs.2011.12.006
[68] 黄敏儿, 杜志强, 朱庆, 等.利用像素高度图的三维建筑物屋顶和立面提取方法[J].武汉大学学报·信息科学版, 2014, 39(10): 1 221-1 224 http://ch.whu.edu.cn/CN/abstract/abstract3099.shtml Huang Min'er, Du Zhiqiang, Zhu Qing, et al. 3D Building Facades and Roofs Objects Extraction from Pixel Height Map[J]. Geomatics and Information Science of Wuhan University, 2014, 39(10): 1 221-1 224 http://ch.whu.edu.cn/CN/abstract/abstract3099.shtml
[69] 周晓敏, 孟晓林, 张雪萍, 等倾斜摄影测量的城市真三维模型构建方法[J].测绘科学, 2016, 41(9):159-163 http://d.old.wanfangdata.com.cn/Periodical/chkx201609031 Zhou Xiaomin, Meng Xiaolin, Zhang Xueping, et al. A Method for Urban Real 3D Model Building Based on Oblique Photogrammetry[J]. Science of Surveying and Mapping, 2016, 41(9):159-163 http://d.old.wanfangdata.com.cn/Periodical/chkx201609031
[70] Kim H T, Kim S B, Go J S, et al. Building 3D Geospatial Information Using Airborne Multi-looking Digital Camera System[J]. Journal of Convergence Information Technology, 2010, 5(1): 15-22 doi: 10.4156/jcit
[71] 邱春霞, 董乾坤, 刘明.倾斜影像的三维模型构建与模型优化[J].测绘通报, 2017(5):35-39 http://d.old.wanfangdata.com.cn/Periodical/chtb201705007 Qiu Chunxia, Dong Qiankun, Liu Ming. Using Tilt Images to Build 3D Model and Optimization Model[J]. Bulletin of Surveying and Mapping, 2017(5):35-39 http://d.old.wanfangdata.com.cn/Periodical/chtb201705007
[72] 李玮玮, 帅向华, 刘钦.基于倾斜摄影三维影像的建筑物震害特征分析[J].自然灾害学报, 2016, 25(2):152-158 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzhxb201602018 Li Weiwei, Shuai Xianghua, Liu Qin. Building Damage Characteristics Analysis Based on the Three-Dimensional Image from Oblique Photography[J]. Journal of Natural Disasters, 2016, 25(2):152-158 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzhxb201602018
-
期刊类型引用(4)
1. 邹历,袁飞翔,宋晓伟,曾毅. 基于VFISNet无监督拼接网络的侧扫声呐图像镶嵌. 江西测绘. 2024(02): 39-42 . 百度学术
2. 王爱学,金绍华,刘天阳,李平,吴振磊. 融合航迹和磁罗经信息的侧扫声呐瞬时航向修正. 哈尔滨工程大学学报. 2024(10): 2025-2033 . 百度学术
3. 李雪申,吴永亭,胡俊,豆虎林,李治远. 基于地物不变性的侧扫声纳条带图像匹配方法. 海洋测绘. 2023(02): 6-10 . 百度学术
4. 高飞,王晓,杨敬华,张博宇,周海波,陈佳星. 多条带侧扫声呐图像精拼接方法研究. 科技创新与应用. 2021(05): 1-4 . 百度学术
其他类型引用(9)
计量
- 文章访问数: 2728
- HTML全文浏览量: 367
- PDF下载量: 543
- 被引次数: 13