-
摘要: 甚长基线干涉测量(very long baseline interferometry, VLBI)台站钟差的补偿误差将导致VLBI时延观测量参考历元的偏离,进而对世界时(universal time,UT1)的准确估计产生影响。台站钟差包含格式器钟差和设备时延,设备时延是影响钟差补偿精准度的关键因素。上海佘山VLBI站是全球测地参考框架的基准站,有必要评估该站的钟差补偿精准度。利用该站2002—2017年国际测地观测数据的相关处理结果,分析了相关处理机对佘山站钟差的补偿精度。结果表明,不同VLBI相关处理机对佘山站模拟终端的设备时延补偿具有较好的一致性和长期稳定性,满足UT1测量精度需求,但是上海相关处理机对佘山站数字化终端的设备时延补偿存在大于1 μs的系统差,有必要进一步改进钟差搜索方法和提高钟差补偿精度。Abstract:Objectives The compensation error of clock offset for a very long baseline interferometry (VLBI) station leads to the shift of delay observables in reference epochs, and further affects the estimation of universal time (UT1). The station clock offset includes the formatter clock offset and the instrumental delay, and the instrumental delay is essential for clock offset compensation. Since the Sheshan VLBI station is the fiducial station of the global geodetic reference frame, it is important to evaluate the compensation accuracy of the clock offset in the Sheshan station.Methods We used the data of Sheshan station from all international geodetic observations from 2002 to 2017. In terms of different international VIBL service (IVS) correlators, data acquisition systems and recorded bandwidth, the compensation values of clock offsets were computed and analyzed by extracting clock parameters from correlator reports and formatter clock offsets from station log files.Results Different VIBL correlators show good agreement and stability in long term for the instrument delay compensation of the analog terminal in the Sheshan station. However, a systematic bias of clock offset compensation of more than 1 μs is revealed in Sheshan station.Conclusions In most cases, the compensation accuracy of clock offsets for Sheshan VLBI station can meet the requirement of UT1 measurements. However, it is necessary to improve the searching algorithm of the clock offset and the accuracy of clock offset compensation due to the system bias.
-
-
表 1 CDAS终端和模拟终端的抽取因子和带宽
Table 1 Decimation Factor and Bandwidth of CDAS Terminal and Analog Terminal
抽取因子 CDAS终端带宽/MHz 模拟终端带宽/MHz 8 4 2 4 8 4 2 16 8 1 32 16 表 2 设备时延补偿值大于3$ \mathit{\sigma } $的数据
Table 2 Outlier Data Which Instrumental Delay Compensation Values Greater than 3$ \sigma $
观测年份 观测代码 设备时延补偿值/μs 2002 T2004 2.23 2004 T2029 -3.27 2016 R1740 2.16 2016 R1746 -2.20 表 3 模拟终端的设备时延补偿值统计
Table 3 Statistics on the Instrumental Delay Compensation Values Using the Analog Terminal
相关处理机 处理次数 平均值/μs 标准偏差/μs 波恩 132 -0.07 0.64 华盛顿 37 -0.23 0.41 上海 6 -0.38 0.59 表 4 CDAS终端的设备时延补偿值统计
Table 4 Statistics on the Instrumental Delay Compensation Values Using the CDAS Terminal
处理机 带宽/MHz 处理次数 平均值/μs 标准偏差/μs 波恩 4 3 19.36 1.01 8 17 9.88 0.25 16 0 上海 4 1 17.63 8 3 7.89 0.11 16 5 3.04 0.40 -
[1] Bare C, Clark B G, Kellermann K I, et al. Interferometer Experiment with Independent Local Oscillators[J]. Science, 1967, 157: 189-191 doi: 10.1126/science.157.3785.189
[2] Schuh H, Behrend D. VLBI: A Fascinating Technique for Geodesy and Astrometry[J]. Journal of Geodynamics, 2012, 61: 68-80 doi: 10.1016/j.jog.2012.07.007
[3] 刘鹂, 李金岭. 中国VLBI网测站参数解析[J]. 武汉大学学报·信息科学版, 2014, 39(3): 262-266 doi: 10.13203/j.whugis20120005 Liu Li, Li Jinling. Determination and Analysis of Station Parameters of the Chinese VLBI Network[J]. Geomatics and Information Science of Wuhan University, 2014, 39(3): 262-266 doi: 10.13203/j.whugis20120005
[4] Fey A L, Gordon D, Jacobs C S, et al. The Second Realization of the International Celestial Reference Frame by Very Long Baseline Interferometry[J]. The Astronomical Journal, 2015, 150(2): 58-73 doi: 10.1088/0004-6256/150/2/58
[5] Shu Fengchun, Leonid P, Wu Jiang, et al. VLBI Ecliptic Plane Survey: VEPS-1[J]. The Astrophysical Journal Supplement Series, 2017, 230(2): 13-24 doi: 10.3847/1538-4365/aa71a3
[6] Duev D A, Calvés G M, Pogrebenko S V, et al. Spacecraft VLBI and Doppler Tracking: Algorithms and Implementation[J]. Astronomy and Astrophysics, 2012, 541, DOI: 10.1051/0004‑6361/201218885
[7] 童锋贤, 郑为民, 舒逢春. VLBI相位参考成像方法用于玉兔巡视器精确定位[J]. 科学通报, 2014, 59(34): 3 362-3 369 https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201434009.htm Tong Fengxian, Zheng Weimin, Shu Fengchun. Accurate Relative Positioning of Yutu Lunar Rover Using VLBI Phase-Referencing Mapping Technolog[J]. Chinese Science Bulletin, 2014, 59(34): 3 362-3 369 https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201434009.htm
[8] Thomas H, Koyama Y, Boehm J, et al. The Effect of Neglecting VLBI Reference Station Clock Offsets on UT1 Estimates[J]. Advances in Space Research, 2009, 43(6): 910-916 doi: 10.1016/j.asr.2008.11.005
[9] 孙靖, 戴春丽, 简念川, 等. 利用VLBI-CONT08观测量确定夏季ERP较强周日变化的研究[J]. 科学通报, 2010, 55(22): 2 177-2 182 https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201022003.htm Sun Jing, Dai Chunli, Jian Nianchuan, et al. Investigation of Stronger Diurnal ERP Signals in Summer Derived from the VLBI CONT08 Campaign[J]. Chinese Science Bulletin, 2010, 55(22): 2 177-2 182 https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201022003.htm
[10] 李斐, 邵先远, 曲春凯, 等. 利用2006—2015年VLBI数据进行地球定向参数解算与分析[J]. 武汉大学学报·信息科学版, 2019, 44(11): 1 581-1 587 doi: 10.13203/j.whugis20170365 Li Fei, Shao Xianyuan, Qu Chunkai, et al. Solution and Analysis of Earth Orientation Parameters with 2006—2015 VLBI Observation[J]. Geomatics and Information Science of Wuhan University, 2019, 44(11): 1 581-1 587 doi: 10.13203/j.whugis20170365
[11] Niell A, Barrett J, Burns A, et al. Demonstration of a Broadband Very Long Baseline Interferometer System: A New Instrument for High-Precision Space Geodesy[J]. Radio Science, 2018, 53(10): 1 269-1 291 doi: 10.1029/2018RS006617
[12] Himwich E, Bertarini A, Corey B, et al. Impact of Station Clocks on UT1-TAI Estimates[C]// The 23th European VLBI Group for Geodesy and Astrometry Working Meeting, Gothenburg, Sweden, 2017
[13] Bachmann S, Thaller D, Roggenbuck O, et al. IVS Contribution to ITRF2014[J]. Journal of Geodesy, 2016, 90(7): 631-654 doi: 10.1007/s00190-016-0899-4
[14] Nothnagel A, Nilsson T, Schuh H. Very Long Baseline Interferometry: Dependencies on Frequency Stability[J]. Space Science Reviews, 2018, 214(3): 66-80 doi: 10.1007/s11214-018-0498-1
[15] Behrend D. Data Handling Within the International VLBI Service[J]. Data Science Journal, 2013, 12, DOI: 10.2481/dsj.WDS-011
[16] Zhang Xiuzhong, Shu Fengchun, Xiang Yang, et al. VLBI Technology Development at SHAO[C]. IVS 2010 General Meeting, Hobart, Australia, 2010
[17] 朱人杰, 张秀忠, 韦文仁, 等. 我国新一代VLBI数字基带转换器研制进展[J]. 天文学进展, 2011, 29(2): 207-217 doi: 10.3969/j.issn.1000-8349.2011.02.007 Zhu Renjie, Zhang Xiuzhong, Wei Wenren, et al. The Progress of Modern Chinese Data Acquisition System[J]. Progress in Astronomy, 2011, 29(2): 207-217 doi: 10.3969/j.issn.1000-8349.2011.02.007
-
期刊类型引用(14)
1. 刘学习,朱守庆,陈国,张克非,郑南山,刘婧璇. 基于全球统一坐标框架的GNSS精密轨道与钟差产品一致性分析. 测绘学报. 2025(03): 432-447 . 百度学术
2. 冯晓亮,陈欢,李厚芝. 不同观测环境中的多模GNSS数据质量自动化检测方法. 测绘工程. 2024(06): 56-61 . 百度学术
3. 刘嘉伟,孙保琪,韩蕊,张喆,王侃,袁海波,杨旭海. GNSS多系统RTK授时性能分析. 导航定位与授时. 2023(03): 49-58 . 百度学术
4. 王浩浩,郝明,庄文泉. GNSS实时卫星钟差估计在地震监测中的应用. 导航定位与授时. 2023(03): 108-116 . 百度学术
5. 周长江,余海锋,王林伟,雷云平,岳彩亚. 无频间钟偏差改正的BDS-2三频非组合PPP随机模型优化. 测绘通报. 2023(12): 164-168 . 百度学术
6. 潘丽静,刘翔,夏川茹,王雷雷. GNSS精密卫星钟差实时估计与分析. 城市勘测. 2021(06): 73-76 . 百度学术
7. 郭磊,王甫红,桑吉章,张万威. 一种新的利用历元间位置变化量约束的GNSS导航算法. 武汉大学学报(信息科学版). 2020(01): 21-27 . 百度学术
8. 陶钧,张柔. GPS/BeiDou/Galileo/GLONASS实时精密卫星钟差估计. 测绘地理信息. 2020(03): 102-106 . 百度学术
9. 黄观文,王浩浩,谢威,曹钰. GNSS实时卫星钟差估计技术进展. 导航定位与授时. 2020(05): 1-9 . 百度学术
10. 张浩,赵兴旺,陈佩文,谢毅. GPS/BDS卫星钟差融合解算模型及精度分析. 合肥工业大学学报(自然科学版). 2020(09): 1192-1196 . 百度学术
11. 叶珍,李浩军. GNSS卫星钟差估计与结果分析. 导航定位与授时. 2019(03): 88-94 . 百度学术
12. 盛剑锋,张彩红,谭凯. 一种全球导航卫星系统钟差估计优化方案的量化研究. 科学技术与工程. 2019(14): 14-21 . 百度学术
13. 王尔申,赵珩,曲萍萍,庞涛,孙军. 基于拉格朗日插值法的卫星导航空间信号精度评估算法. 沈阳航空航天大学学报. 2019(04): 43-48 . 百度学术
14. 李云,崔文刚. 精密单点定位技术发展及应用. 科学技术与工程. 2019(27): 1-11 . 百度学术
其他类型引用(10)