Abstract:
Glacier motion represents a significant reference for the hazard assessment of glacier and glacial lakes.GF-3, as the first civil spaceborne synthetic aperture radar satellite in China, has important advantages in monitoring glacier motion due to its characteristics of all-weather, all-time capabilities and high spatial resolution. Based on five GF-3 images with FSⅡ imaging modes, the surface velocities of the Yiga Glacier, located in Nyenchen Tonglha Mountains, are estimated over five time periods using offset tracking technique during November 2017 to March 2018. The results were compared with the offset tracking results of Sentinel-1 images which have a similar time with GF-3 image and based on the assumption that the velocity of the bedrock in the study area should be 0, the velocity residuals of the bedrock in each period are calculated, then the applicability of GF-3 image in monitoring glacier surface motion was evaluated. The results of GF-3 data show that the distribution of the Yiga Glacier motion is similar in four periods, and the maximum surface velocities are all distributed in the central part of the glacier where the elevation changes dramatically. Meanwhile, the results are consistent with the results of Sentinel-1 based on two images. The RMSEs of velocity residuals in the bedrock area in four periods are 1.4 cm/d, 2.0 cm/d, 1.7 cm/d and 2.3 cm/d, respectively, which validate the reliability of the deformation estimated used GF-3 images in this paper. Based on the above analysis, GF-3 SAR data can be used as one of the conventional data sources for monitoring glacier surface movement. Because of its high spatial resolution and high cost performance, GF-3 can play a unique role in monitoring the motions of glaciers in China.