一种傅里叶信息度量的曲线分形描述与多尺度表达方法

A Fractal Description and Multi-scale Expression Method of Fourier Information Metrics

  • 摘要: 提出了一种新的描述地理线要素复杂程度的方法。首先利用傅里叶级数将地理线要素从空间域转化到频率域进行分析,对不同的地理线要素进行傅里叶展开后得到其不同的傅里叶描述子,并采用设定面积阈值的方法,将傅里叶展开前后的地理要素产生的偏差控制在一定范围内,使经过傅里叶描述子还原的曲线可以近似代替原地理线要素。然后,在香农信息熵理论的基础上对傅里叶展开后的拟合曲线进行信息量的计算,再将频率域与分形理论相结合,在首尾分布以及Koch的"二八定律"的基础上对信息量数据进行进一步处理,从而提出了分布指数p的概念。最后将分布指数与方根模型相结合,利用最小二乘法得到了地图在不同尺度下的分布指数的近似表达式,并选取一片区域的等高线数据进行实验,验证了分布指数对不同尺度下的地理线要素复杂程度具有较好的表达效果,并可以将其运用于线要素的多尺度表达。

     

    Abstract: This paper presents a new method for describing the complexity of geographic line elements. Firstly, the Fourier series is used to transform the geographic line elements from the spatial domain to the frequency domain for analysis. Fourier expansions are performed on different geographic line elements to obtain different Fourier descriptors, then we use the method of setting the area threshold to control the deviation of the geographic elements before and after the Fourier expansion to a certain extent, so that the curve reduced by the Fourier descriptor can replace the original geographic line elements. Secondly, based on Shannon's information entropy theory, the amount of information of the fitted curve after Fourier expansion is calculated. Then, by combining the frequency domain with the fractal theory, the data of the amount of information is further processed based on the Head-tail data break and Koch's Two-Eighth Law, and the concept of the distribution index p is proposed. Finally, the distribution index and the square root model are combined, and the approximate expression of the distribution index of the map at different scales is obtained by the least squares method. We select the contour data of a region to conduct experiments, and experiment results show that the distribution index has a good expression effect on the complexity of geographic line elements at different scales, and can be applied to multi-scale expression of line elements.

     

/

返回文章
返回