GNSS坐标时间序列分析理论与方法及展望

姜卫平, 王锴华, 李昭, 周晓慧, 马一方, 马俊

姜卫平, 王锴华, 李昭, 周晓慧, 马一方, 马俊. GNSS坐标时间序列分析理论与方法及展望[J]. 武汉大学学报 ( 信息科学版), 2018, 43(12): 2112-2123. DOI: 10.13203/j.whugis20180333
引用本文: 姜卫平, 王锴华, 李昭, 周晓慧, 马一方, 马俊. GNSS坐标时间序列分析理论与方法及展望[J]. 武汉大学学报 ( 信息科学版), 2018, 43(12): 2112-2123. DOI: 10.13203/j.whugis20180333
JIANG Weiping, WANG Kaihua, LI Zhao, ZHOU Xiaohui, MA Yifang, MA Jun. Prospect and Theory of GNSS Coordinate Time Series Analysis[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2112-2123. DOI: 10.13203/j.whugis20180333
Citation: JIANG Weiping, WANG Kaihua, LI Zhao, ZHOU Xiaohui, MA Yifang, MA Jun. Prospect and Theory of GNSS Coordinate Time Series Analysis[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2112-2123. DOI: 10.13203/j.whugis20180333

GNSS坐标时间序列分析理论与方法及展望

基金项目: 

国家杰出青-科学基金 41525014

湖北省技术创新专项重大项目 2018AAA066

北京建筑大学未来城市设计高精尖创新中心项目 UDC2018031321

详细信息
    作者简介:

    姜卫平, 博士, 教授, 博士生导师, 主要从事卫星大地测量学理论与方法及工程应用研究。wpjiang@whu.edu.cn

  • 中图分类号: P228

Prospect and Theory of GNSS Coordinate Time Series Analysis

Funds: 

The National Science Foundation for Distinguished Young Scholars of China 41525014

the Key Project for Technological Innovation in Hubei Province 2018AAA066

the Major Project of Beijing Future Urban Design Innovation Center, Beijing University of Civil Engineering and Architecture UDC2018031321

More Information
    Author Bio:

    JIANG Weiping, PhD, professor, specializes in the theories, methodologies, and engineering application of satellite geodesy. E-mail:wpjiang@whu.edu.cn

  • 摘要: 长期累积的全球卫星导航系统(Global Navigation Satellite System,GNSS)基准站坐标时间序列为大地测量学及地球动力学研究提供了基础数据。通过完善GNSS数据处理模型及策略,研究造成非线性运动的机制并进行有效建模,可以获得测站准确的位置和速度,不仅有助于合理解释板块构造运动,建立和维持动态地球参考框架,而且能更好地研究冰后回弹及海平面变化,反演冰雪质量变迁等地球动力学过程。首先从基准站坐标的精确获取、时间序列模型构建、时间序列信号分析等方面描述了GNSS坐标时间序列分析的理论与处理方法;其次,探讨了坐标时间序列噪声模型构建技术,给出了严密三维噪声模型构建方法;然后,疏理了坐标时间序列中非线性变化成因机制的研究进展;最后,总结了基于GNSS坐标时间序列的应用领域,并展望了其未来的发展方向。
    Abstract: The long-term accumulated coordinate time series of Global Navigation Satellite System (GNSS) reference stations provide basic data for geodesy and geodynamic studies. Through improving precise GNSS data processing models and strategies, together with investigating physical mechanism and properly modeling of the non-linear variations, the precise position and velocity of GNSS stations can be estimated. This will not only help interpret the plate tectonics reasonably, establish and maintain the terrestrial reference frame, but also contribute to investigating the geodynamic processes, such as post-glacial rebound, sea level change, as well as snow and ice redistribution inversion, et al. In this paper, the basic theory and methodology of GNSS coordinate time series analysis is reviewed by introducing the model estimation of station coordinates time series and the signal analysis. Then, noise modeling technique for GNSS coordinate time series is outlined. Particularly, a rigorous 3-D noise modeling method is proposed to best describe the stochastic process. After that, the advances in investigating physical mechanism of the non-linear variations in GNSS coordinate time series are summarized. Finally, we outline the scientific and engineering applications of GNSS coordinate time series, and discuss the prospect of future research.
  • 随着中国经济的不断增长,土地资源稀缺已经成为一些丘陵山区城市发展的重要制约因素。兰州市地处黄河上游,三面环山,中心城区位于狭长的河谷盆地中,河谷内几乎已不存在建设空间,城市空间发展严重受限[1],空间扩展已成为兰州市继续发展的当务之急[2]。目前,对低丘缓坡沟壑等未利用土地进行开发利用(简称削山造地)是中国山区城市扩张开发、获得土地资源最直接、最有效的途径[3-4]。削山造地在获取土地资源的同时,也会带来一系列问题,Li等[5]在《Nature》上发表评论文章指出,目前削山造地在经济、技术和环境等问题上的研究均不完善,呼吁各界共同协作,以减少削山造地工程带来的负面影响。

    兰州市自1989年起就开始尝试通过削山造地获取发展空间,对于兰州及其周边区域削山造地状况,国内学者从不同方面展开了研究。汪丽等[6]对白银市低丘缓坡土地建设开发适宜性从生态、工程和经济3个方面进行了评价。何永刚等[7]利用Skyline平台实现了对兰州削山造地的三维检测。张明泉等[8]结合自然人文特性,对兰州市削山造地工程可能产生的环境空气、水土流失、土地利用等问题进行预测,指出施工扬尘将加重兰州市区内的总悬浮颗粒物(total suspended particulate,TSP)污染。

    但在以往的研究中,缺少利用遥感技术获取削山造地区域准确的地理信息和对兰州北山区削山造地产生大气污染的研究。兰州位于半干旱区,多种大气污染源并存,主要污染物为悬浮颗粒物[9],研究削山造地对兰州市大气环境产生的影响具有重要意义。Aermod模型在局部空气污染及扩散研究中应用广泛,适用于农村、城市、山地等各种简单或复杂地形[10-11]。因此,本文以兰州北山区削山造地为例,利用遥感变化监测技术提取兰州北山区新增削山造地区域信息,使用风蚀模型和Aermod模型对兰州北山区削山造地所产生的TSP浓度及扩散情况进行研究和分析,将结果与兰州市区地面国测点实测数据进行比较,分析兰州北山区削山造地对兰州市大气质量产生的影响,为兰州后期削山造地实施提供科学依据。

    兰州北山区扬尘浓度预测方案整体技术流程如图 1所示。先通过多时相遥感TM(thematic mapper)影像变化检测技术获取兰州城区及周边每年新增削山造地区域空间位置; 再利用Pasak/Aermod模型结合地面高程数据、地面气象数据预测研究区受削山造地产生的TSP和PM10扩散浓度; 最后将结果与兰州市地面站点实测大气数据进行比较,分析北山区削山造地对兰州市空气质量产生影响的因素与影响程度。

    图  1  扬尘浓度预测流程
    Figure  1.  Prediction Process of Dust Concentration

    采用分类后变化检测的方法对兰州北山区削山造地区域遥感影像进行变化检测,提取每年新增削山造地区域信息。本文使用面向对象决策树分类方法提取出每幅影像中的削山造地区域信息,其流程如图 2所示。信息提取所使用的特征为归一化植被指数(normalized difference vegetation index,NDVI)、归一化水体指数(normalized difference water index,NDWI)、影像亮度(Brightness)和光谱最大差异(Maxdiff)。计算公式分别如下:

    $$ \mathrm{N}\mathrm{D}\mathrm{V}\mathrm{I}=(\mathrm{N}\mathrm{I}\mathrm{R}-R)/(\mathrm{N}\mathrm{I}\mathrm{R}+R) $$ (1)
    $$ \mathrm{N}\mathrm{D}\mathrm{W}\mathrm{I}=(G-\mathrm{N}\mathrm{I}\mathrm{R})/(G+\mathrm{N}\mathrm{I}\mathrm{R}) $$ (2)
    $$ \mathrm{B}\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}\mathrm{n}\mathrm{e}\mathrm{s}\mathrm{s}=\frac{1}{K}\sum\limits _{k=1}^{K}{\overline{C}}_{k}\left(v\right) $$ (3)
    $$ \mathrm{M}\mathrm{a}\mathrm{x}\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{f}=\underset{i, j\in B}{\mathrm{m}\mathrm{a}\mathrm{x}}\left|{\overline{C}}_{i}\left(v\right)-{\overline{C}}_{j}\left(v\right)\right|/\mathrm{B}\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}\mathrm{n}\mathrm{e}\mathrm{s}\mathrm{s} $$ (4)
    图  2  基于决策树法的削山造地区域信息提取流程
    Figure  2.  Process of Information Extracting of Land Creation Area Based on Decision Tree Method

    式中,$ \mathrm{N}\mathrm{I}\mathrm{R} $为近红外波段强度; $ R $为红波段强度; $ G $为绿波段强度; $ K $为影像的波段数; $ {\overline{C}}_{k}\left(v\right) $为对象$ v $中所有像元$ k $波段的平均强度; $ B $为影像所有波段的集合。

    利用Pasak模型计算每一个北山区新增削山造地区域图斑的风蚀模数,Pasak模型只包含风速、土壤含水量和不可蚀颗粒所占比例这3个变量,适用于削山造地情形[12],计算公式如下:

    $$ E=22.2-0.72P+1.69V-2.64R $$ (5)

    式中,$ E $为风力作用引起的土壤侵蚀度; $ P $为土壤中不可侵蚀颗粒所占百分比; $ V $为风速; $ R $为土壤中相对水分含量。

    将每一个图斑作为一个面状污染源,每一个图斑的风蚀模数作为该污染源的排放浓度,输入Aermod模型进行数值模拟计算,其流程如图 3所示。

    图  3  Aermod计算流程
    Figure  3.  Technological Process of Aermod

    首先,由AERMET模块对研究时段气象数据进行处理,得到计算所需要的各种气象要素以及相应的数据格式; 再由AERMAP地形前处理模块对研究区的地形数据进行处理,然后将二者数据处理结果经Aermod模式预测出北山区削山造地产生TSP污染的浓度及扩散范围。为了方便与地面实测数据进行对比分析,使用黄土高原类似地区PM10与TSP换算关系:

    $$ \mathrm{P}\mathrm{M}10/\mathrm{T}\mathrm{S}\mathrm{P}=0.5 $$ (6)

    将预测扩散浓度结果转换为PM10$ \mathrm{ } $[8]

    以兰州及兰州北山区为研究区域,具体范围为103.42°E~104.04°E,35.97°N~36.74°N,研究区覆盖了兰州市区、兰州新区、兰北新城和皋兰县,包括兰州北山区削山造地工程全部范围。

    兰州市空气污染季节特征明显,冬季污染物主要来源为供暖排放,春季则为外来沙尘[13-14]。为排除其他污染源影响,同时考虑到兰州市内国测点从2014年开始启用,因此选择2014—2017年每年8月为研究时段,所用数据见表 1。由于云遮挡的影响,部分年份8月的遥感影像数据不可用,因此采用时间最接近的遥感影像作为替代。

    表  1  试验采用的数据
    Table  1.  Data Used in the Experiment
    数据类型 数据描述
    Landsat遥感影像 获取日期2013-07-23、2014-08-27、2015-08-14、2016-09-10、2017-09-20
    地面高程DEM 兰州市域SRTM DEM原始高程数据
    气象观测数据 525331中川、528890兰州气象站观测数据
    探空气象数据 52983榆中站点
    国测点观测数据 兰炼宾馆、职工医院、铁路设计院、生物制品所4个国测点,用于观测空气质量
    下载: 导出CSV 
    | 显示表格

    对研究区域内遥感影像按照图 2的流程提取削山造地区域,在此基础上进行变化监测获得每年北山区新增削山造地范围,结果如图 4中红色标记的区域所示。

    图  4  2014-08—2017-08兰州北山区每年新增削山造地区域提取结果
    Figure  4.  Extraction Results of New Land Creation Areas in Lanzhou Northern Mountain Area from August 2014 to August 2017

    图 4可见,兰州北山区削山造地工程主要在兰北新城、兰州新区和皋兰区内实施。统计各区域每年新增的削山造地面积如表 2所示,可以发现,2014年兰州北山区整体新增开挖面积最大,为51.79 km2,随后呈现逐年减少的趋势,至2017年,北山区整体新增开挖面积为13.74 km2。各区域每年新增的开挖面积同样也都呈下降趋势,但兰州新区每年新增开挖面积始终保持在较高量级,均超过了10 km2,可见兰州新区是兰州北山区削山造地工程中的重点开挖地区。

    表  2  兰州北山区2014—2017年削山造地面积统计/km2
    Table  2.  Statistics of Land Creation Areas in Lanzhou Northern Mountain Area During 2014—2017/km2
    年份 兰北新城 兰州新区 皋兰 合计
    东片 中片 西片
    2014 10.84 2.70 3.20 24.18 10.81 51.79
    2015 13.29 1.85 4.73 17.84 3.62 41.33
    2016 2.69 1.71 0.68 16.74 0.58 22.40
    2017 0.18 0.32 0.07 12.47 0.70 13.74
    下载: 导出CSV 
    | 显示表格

    按照§1.2所述方法计算每一个新增削山造地区域的风蚀模数并代入Aermod模型进行计算,对结果进行统计并绘制兰州北山区2014—2017年每年8月削山造地区域产生TSP的月均扬尘浓度扩散分布图,如图 5所示,可见4 a中每年8月削山造地所产生的扬尘整体都向东南方向扩散。

    图  5  2014—2017年每年8月TSP月均扬尘浓度分布图
    Figure  5.  Distribution Maps of Monthly Mean TSP Dust Concentration in August During 2014—2017

    统计兰州市气象站2014—2017年每年8月的风向和风力数据,并绘制风向玫瑰图,如图 6所示,可见兰州市4 a间每年8月的主导风向均为北西北风,这与图 5所示的TSP扩散方向相吻合,可见风向是决定扬尘扩散方向的主要因素。

    图  6  2014—2017年每年8月兰州市风向玫瑰图
    Figure  6.  Wind Direction Rose Maps of Lanzhou City in August During 2014—2017

    同时,由图 5可见,兰州北山区2014—2017年8月削山造地产生的TSP月均浓度最大值均出现在兰州新区内,将其与兰州市区内的TSP月均浓度最大值进行比较(见表 3),结合表 2可见其主要原因是兰州新区每年新增的削山造地区域面积最大。随着兰州新区每年新增开挖面积逐渐下降,北山区削山造地产生的TSP月均浓度最大值也逐年降低,从2014年的8 124 μg/m3逐年下降至2017年的4 843 μg/m3

    表  3  兰州新区与兰州市区内削山造地产生的TSP月均浓度最大值对比/(μg·m-3)
    Table  3.  Comparison of Maximum Monthly Mean TSP Concentration Produced by Land Creation Between Lanzhou City and Lanzhou New District/(μg·m-3)
    年份 兰州新区 兰州市区
    2014 8 124 328
    2015 5 100 191
    2016 5 380 167
    2017 4 843 48
    下载: 导出CSV 
    | 显示表格

    兰州市区受北山区削山造地产生的TSP污染浓度最大值同样出现在2014年,达到了328 μg/m3,随后因兰州市附近区域(兰北新城)新增削山造地开挖面积逐渐下降,兰州市区受北山区削山造地产生的TSP污染浓度最大值也逐渐下降。可见新增削山造地开挖面积对削山造地产生的TSP浓度大小有着直接影响,开挖区域面积越大,产生的TSP污染浓度越高。

    参考国家环境空气质量标准(GB3095—2012),绘制北山区削山造地区域产生的PM10污染月均浓度高于150 μg/m3的区域范围,如图 7中的红色区域所示,并统计区域范围面积,如表 4所示,地面气象站点的空间位置见图 7中的绿点标记。由表 4可见,兰州新区在4 a中削山造地产生PM10浓度高于150 μg/m3的区域面积最大,这与兰州新区削山造地开挖面积大、位置集中有直接关系,如果不采取防尘措施,将对当地居民的生活健康产生严重影响。同时,随着对该区域削山造地规模的不断限制,兰北新城在2014年各片区均存在PM10浓度高于150 μg/m3的区域,而2015年、2016年只有部分片区存在PM10浓度高于150 μg/m3的区域,到2017年兰北新城全区域均没有PM10浓度高于150 μg/m3的区域。

    图  7  2014—2017每年8月削山造地产生PM10浓度高于150 μg/m3的区域
    Figure  7.  Areas with PM10 Concentration over 150 μg/m3 Produced by Land Creation in August During 2014—2017
    表  4  各区域削山造地产生PM10浓度高于150 μg/m3的区域面积统计/km2
    Table  4.  Areas Statistics of PM10 Concentration over 150 μg/m3 Produced by Land Creation in Each Region/km2
    年份 兰北新城 兰州新区 皋兰 合计
    东片 中片 西片
    2014 35.78 7.45 15.92 301.62 106.69 498.12
    2015 33.30 0 0 181.69 6.64 221.64
    2016 21.44 27.86 1.50 330.76 0 381.56
    2017 0 0 0 141.23 0 141.23
    下载: 导出CSV 
    | 显示表格

    国测点位置如图 5中红色十字丝标记所示,其中西侧为兰炼宾馆,中部为职工医院,东侧南部为铁路设计院,东侧北部为生物制品所。将兰州市内4个国测点处的PM10月均浓度计算值和国测点观测值进行对比,结果如表 5所示。由表 5可以看出,2014年8月兰州市所受削山造地产生的TSP污染最为严重,PM10月平均计算值达到了月平均观测值的50.4%,其中兰州市位于国测点-生物制品所处所受削山造地扬尘的影响最大,计算值达到了观测值的77.5%,兰州市位于国测点-兰炼宾馆处所受削山造地扬尘的影响次之,计算值达到了观测值的48.3%;削山造地扬尘在铁路设计院和职工医院这两个国测点处所产生的PM10污染浓度分别只占观测值浓度的42.5%和34.6%。这主要是因为2014年兰北新城东片区开挖面积大、离城区更近,导致兰州市在生物制品所附近区域受削山造地产生的TSP影响更大。2015年8月和2016年8月平均计算值分别达到了观测值的24.7%和32.9%,到2017年,由于兰州市区周边开挖面积小,故产生的TSP污染低,平均计算值仅为观测值的6.0%,进一步证明削山造地开挖面积能直接影响产生的TSP污染程度。

    表  5  2014—2017年8月国测点处PM10月均浓度计算值与观测值对比
    Table  5.  Comparison Between Calculated and Observed Values of PM10 at State Monitoring Stations in August During 2014—2017
    测点处 2014年 2015年 2016年 2017年
    计算值/观测值/$ (\mathrm{\mu }\mathrm{g}·{\mathrm{m}}^{-3} $) 占比/% 计算值/观测值/$ (\mathrm{\mu }\mathrm{g}·{\mathrm{m}}^{-3} $) 占比/% 计算值/观测值/$ (\mathrm{\mu }\mathrm{g}·{\mathrm{m}}^{-3} $) 占比/% 计算值/观测值/$ (\mathrm{\mu }\mathrm{g}·{\mathrm{m}}^{-3} $) 占比/%
    兰炼宾馆 51.3/106.2 48.3 17.4/92.3 18.9 34.9/87.8 39.7 1.6/72.2 2.2
    职工医院 36.9/106.8 34.6 30.9/102.3 30.2 25.5/82.6 30.9 2.8/79.6 3.5
    铁路设计院 35.5/83.6 42.5 17.5/100.1 17.5 15.6/70.6 22.1 5.3/65.3 3.5
    生物制品所 73.5/94.9 77.5 29.7/91.5 32.5 27.1/71.9 37.7 7.8/72.7 10.7
    平均值 49.3/97.8 50.4 23.9/96.6 24.7 25.8/78.2 32.9 4.4/72.5 6.0
    下载: 导出CSV 
    | 显示表格

    绘制2014—2017年每年新增削山造地面积、开挖图斑数和削山造地产生PM10浓度占地面观测PM10浓度比例的变化趋势,分别如图 8图 10所示。可见2014—2017年每年削山造地面积呈稳定下降趋势,PM10计算值占比曲线受新增削山造地面积的影响,整体呈下降趋势,其上下波动与开挖图斑数有关。当开挖图斑数曲线大幅上升时,表明削山造地开挖区域分布比较零散,平均单个开挖区域面积较小,从而使北山区削山造地产生的扬尘污染在兰州市区影响相对下降。

    图  8  新增削山造地面积随时间变化趋势
    Figure  8.  Time Trend Map of New Land Creation Areas
    图  9  开挖图斑数随时间变化趋势
    Figure  9.  Time Trend Map of Numbers of Land Creation Polygons
    图  10  PM10计算值与观测值的比例随时间变化趋势
    Figure  10.  Time Trend Map of the Ratios of PM10 Calculated Values to Observed Values

    本文通过多时相遥感影像变化检测获取了兰州北山区新增削山造地区域,以Pasak模型计算得到的风蚀模数为污染强度,利用Aermod模型预测北山区削山造地产生的TSP浓度及空间分布,并分析其对兰州市空气质量造成的影响,主要结论如下:

    1) 兰州北山区削山造地区域在风蚀作用的影响下产生的扬尘污染会对兰州市区空气质量产生影响。其影响程度主要由削山造地开挖面积、风向风速及削山造地区域与城区距离3个因素决定。

    2) 通过与国测点观测值进行对比分析发现,2014—2017年随着每年新增削山造地区域面积不断减小,开挖区域重点向北转移,其产生的扬尘污染对兰州市空气质量的影响呈下降趋势。

    目前,兰州新区附近削山造地产生的PM10污染浓度超标,对该区域居民生活健康有严重隐患,同时也影响着兰州城区的空气质量。建议在后续削山造地工程中科学规划,合理控制削山造地区域面积,同时在施工中做好防尘措施,以降低削山造地扬尘对兰州市区空气质量的影响。

  • [1]

    Strange W E, Weston N D. The Establishment of a GPS Continuously Operating Reference Station System as a Framework for the National Spatial Reference System[C].ION Nat Tech Meeting, Fairfax, VA, USA, 1995

    [2] 姜卫平. GNSS基准站网数据处理方法与应用[M].武汉:武汉大学出版社, 2017

    Jiang Weiping. Data Processing Methods and Applications of the GNSS Reference Station Network[M]. Wuhan:Wuhan University Press, 2017

    [3] 姜卫平.卫星导航定位基准站网的发展现状, 机遇与挑战[J].测绘学报, 2017, 46(10):1379-1388 doi: 10.11947/j.AGCS.2017.20170424

    Jiang Weiping. Challenges and Opportunities of GNSS Reference Stations Network[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1379-1388 doi: 10.11947/j.AGCS.2017.20170424

    [4] 姜卫平, 刘经南, 叶世榕. GPS形变监测网基线处理中系统误差的分析[J].武汉大学学报·信息科学版, 2001, 26(3):196-199 http://ch.whu.edu.cn/CN/abstract/abstract5166.shtml

    Jiang Weiping, Liu Jingnan, Ye Shirong. The Systematical Error Analysis of Baseline Processing in GPS Network[J]. Geomatics and Information Science of Wuhan University, 2001, 26(3):196-199 http://ch.whu.edu.cn/CN/abstract/abstract5166.shtml

    [5]

    Dach R, Lutz S, Walser P, et al. Bernese GNSS Software Version 5.2(User Manual)[M]. Bern:Astronomical Institute, University of Bern, 2015

    [6]

    He X, Montillet J P, Fernandes R, et al. Review of Current GPS Methodologies for Producing Accurate Time Series and Their Error Sources[J]. Journal of Geodynamics, 2017, 106:12-29 doi: 10.1016/j.jog.2017.01.004

    [7] 施闯, 刘经南, 姚宜斌.高精度GPS网数据处理中的系统误差分析[J].武汉大学学报·信息科学版, 2002, 27(2):148-152 http://ch.whu.edu.cn/CN/abstract/abstract4935.shtml

    Shi Chuang, Liu Jingnan, Yao Yibin. The Systematical Error Analysis of High Precision GPS Network Adjustment[J]. Geomatics and Information Science of Wuhan University, 2002, 27(2):148-152 http://ch.whu.edu.cn/CN/abstract/abstract4935.shtml

    [8]

    Tregoning P, Herring T A. Impact of a Priori Ze-nith Hydrostatic Delay Errors on GPS Estimates of Station Heights and Zenith Total Delays[J]. Geophysical Research Letters, 2006, 33(23):160-176 http://www.researchgate.net/publication/228724564_Impact_of_a_priori_zenith_hydrostatic_delay_errors_on_GPS_estimates_of_station_heights_and_zenith_total_delays?ev=sim_pub

    [9] 陈俊勇.大地坐标框架理论和实践的进展[J].大地测量与地球动力学, 2007, 27(1):1-6 http://d.old.wanfangdata.com.cn/Periodical/dkxbydz200701001

    Chen Junyong. Progress in Theory and Practice for Geodetic Reference Coordinate Frame[J]. Journal of Geodesy and Geodynamics, 2007, 27(1):1-6 http://d.old.wanfangdata.com.cn/Periodical/dkxbydz200701001

    [10]

    Altamimi Z, Rebischung P, Métivier L, et al. ITRF2014:A New Release of the International Terrestrial Reference Frame Modeling Nonlinear Station Motions[J]. Journal of Geophysical Research:Solid Earth, 2016, 121(8):6109-6131 doi: 10.1002/2016JB013098

    [11]

    Collilieux X, Altamimi Z, Coulot D, et al. Impact of Loading Effects on Determination of the International Terrestrial Reference Frame[J]. Advances in Space Research, 2010, 45(1):144-154 doi: 10.1016/j.asr.2009.08.024

    [12] 姜卫平, 马一方, 邓连生, 等.毫米级地球参考框架的建立方法与展望[J].测绘地理信息, 2016, 41(4):1-6 http://d.old.wanfangdata.com.cn/Periodical/chxxygc201604001

    Jiang Weiping, Ma Yifang, Deng Liansheng, et al. Establishment of mm-Level Terrestrial ReferenceFrame and Its Prospect[J]. Journal of Geomatics, 2016, 41(4):1-6 http://d.old.wanfangdata.com.cn/Periodical/chxxygc201604001

    [13]

    Freymueller J T. Seasonal Position Variations and Regional Reference Frame Realization[M]. Berlin, Heidelberg:Springer, 2009

    [14]

    Collilieux X, van Dam T, Ray J, et al.Strategies to Mitigate Aliasing of Loading Signals While Estimating GPS Frame Parameters[J]. Journal of Geodesy, 2012, 86(1):1-14 doi: 10.1007/s00190-011-0487-6

    [15]

    Jiang W, Li Z, van Dam T, et al. Comparative Analysis of Different Environmental Loading Methods and Their Impacts on the GPS Height Time Series[J]. Journal of Geodesy, 2013, 87(7):687-703 doi: 10.1007/s00190-013-0642-3

    [16]

    Blewitt G, Lavallée D. Effect of Annual Signals on Geodetic Velocity[J]. Journal of Geophysical Research:Solid Earth, 2002, 107(B7):2145 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5533a29b453528783cd273d4af8ade48

    [17]

    Mao A, Harrison C G A, Dixon T H. Noise in GPS Coordinate Time Series[J].Journal of Geophysical Research:Solid Earth, 1999, 104(B2):2797-2816 doi: 10.1029/1998JB900033

    [18]

    Zhang J, Bock Y, Johnson H, et al. Southern California Permanent GPS Geodetic Array:Error Analysis of Daily Position Estimates and Site Velocities[J]. Journal of Geophysical Research:Solid Earth, 1997, 102(B8):18035-18055 doi: 10.1029/97JB01380

    [19]

    Williams S D P, Bock Y, Fang P, et al. Error Analysis of Continuous GPS Position Time Series[J]. Journal of Geophysical Research:Solid Earth, 2004, 109(B3):B03412 doi: 10.1029/2003JB002741/full

    [20]

    Langbein J. Noise in GPS Displacement Measurements from Southern California and Southern Nevada[J]. Journal of Geophysical Research:Solid Earth, 2008, 113(B5):1-12 doi: 10.1029-2007JB005247/

    [21]

    Gazeaux J, Williams S, King M, et al. Detecting Offsets in GPS Time Series:First Results from the Detection of Offsets in GPS Experiment[J].Journal of Geophysical Research:Solid Earth, 2013, 118(5):2397-2407 doi: 10.1002/jgrb.50152

    [22]

    Bos M S, Fernandes R M S, Williams S D P, et al. Fast Error Analysis of Continuous GPS Observations[J].Journal of Geodesy, 2008, 82(3):157-166 doi: 10.1007/s00190-007-0165-x

    [23]

    Bruni S, Zerbini S, Raicich F, et al. Detecting Discontinuities in GNSS Coordinate Time Series with STARS:Case Study, the Bologna and Medicina GPS Sites[J].Journal of Geodesy, 2014, 88(12):1203-1214 doi: 10.1007/s00190-014-0754-4

    [24]

    Blewitt G, Kreemer C, Hammond W C, et al. Midas Robust Trend Estimator for Accurate GPS Station Velocities Without Step Detection[J].Journal of Geophysical Research:Solid Earth, 2016, 121(3):2054-2068 doi: 10.1002/2015JB012552

    [25]

    Bos M S, Fernandes R M S, Williams S D P, et al. Fast Error Analysis of Continuous GNSS Observations with Missing Data[J].Journal of Geodesy, 2013, 87(4):351-360 doi: 10.1007/s00190-012-0605-0

    [26]

    Trubienko O, Fleitout L, Garaud J D, et al. Interpretation of Interseismic Deformations and the Seismic Cycle Associated with Large Subduction Earthquakes[J].Tectonophysics, 2013, 589(2):126-141 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=33ae84bc59ff4179117e445213666160

    [27]

    Amiri-Simkooei A R, Tiberius C C J M, Teunissen P J G. Assessment of Noise in GPS Coordinate Time Series:Methodology and Results[J].Journal of Geophysical Research:Solid Earth, 2007, 112(B7):B07412 doi: 10.1029/2006JB004913/citedby

    [28]

    Williams S D P.CATS:GPS Coordinate Time Series Analysis Software[J].GPS Solutions, 2008, 12(2):147-153 doi: 10.1007/s10291-007-0086-4

    [29]

    Khodabandeh A.GPS Position Time-Series Analysis Based on Asymptotic Normality of M-Estimation[J].Journal of Geodesy, 2012, 86(1):15-33 doi: 10.1007/s00190-011-0489-4

    [30]

    Ray J, Altamimi Z, Collilieux X, et al. Anomalous Harmonics in the Spectra of GPS Position Estimates[J].GPS Solutions, 2008, 12(1):55-64 doi: 10.1007/s10291-007-0067-7

    [31]

    Collilieux X, Altamimi Z, Coulot D, et al. Comparison of very Long Baseline Interferometry, GPS, and Satellite Laser Ranging Height Residuals from ITRF2005 Using Spectral and Correlation Methods[J]. Journal of Geophysical Research:Solid Earth, 2007, 112(B12):B12403 doi: 10.1029/2007JB004933

    [32]

    Dong D, Fang P, Bock Y, et al. Spatiotemporal Filtering Using Principal Component Analysis and Karhunen-Loeve Expansion Approaches for Regional GPS Network Analysis[J].Journal of Geophysical Research:Solid Earth, 2006, 111(B3):B03405 doi: 10.1029-2005JB003806/

    [33]

    Davis J L, Wernicke B P, Bisnath S, et al. Subcontinental-Scale Crustal Velocity Changes Along the Pacific-North America Plate Boundary[J].Nature, 2006, 441(7097):1131 doi: 10.1038/nature04781

    [34]

    Tesmer V, Steigenberger P, Rothacher M, et al. Annual Deformation Signals from Homogeneously Reprocessed VLBI and GPS Height Time Series[J].Journal of Geodesy, 2009, 83(10):973-988 doi: 10.1007/s00190-009-0316-3

    [35]

    Chen Q, Dam T V, Sneeuw N, et al. Singular Spectrum Analysis for Modeling Seasonal Signals from GPS Time Series[J].Journal of Geodynamics, 2013, 72(12):25-35 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0232122131/

    [36]

    Rangelova E, Sideris M G, Kim J W. On the Capabilities of the Multi-Channel Singular Spectrum Method for Extracting the Main Periodic and Non-Periodic Variability from Weekly GRACE Data[J].Journal of Geodynamics, 2012, 54(2):64-78 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=abaa2957a18ca1e9c11eed7ada8387e9

    [37]

    Shen Y, Peng F, Li B. Improved Singular Spectrum Analysis for Time Series with Missing Data[J].Nonlinear Processes in Geophysics, 2015, 22(4):371-376 doi: 10.5194/npg-22-371-2015

    [38]

    Klos A, Bos M S, Bogusz J. Detecting Time-Varying Seasonal Signal in GPS Position Time Series with Different Noise Levels[J].GPS Solutions, 2018, 22(1):21 doi: 10.1007/s10291-017-0686-6

    [39]

    Shen Y, Li W, Xu G, et al. Spatiotemporal Filtering of Regional GNSS Network's Position Time Series with Missing Data Using Principle Component Analysis[J].Journal of Geodesy, 2014, 88(1):1-12 doi: 10.1007/s00190-013-0663-y

    [40]

    Didova O, Gunter B, Riva R, et al. An Approach for Estimating Time-Variable Rates from Geodetic Time Series[J].Journal of Geodesy, 2016, 90(11):1207-1221 doi: 10.1007/s00190-016-0918-5

    [41] 李昭, 姜卫平, 刘鸿飞, 等.中国区域IGS基准站坐标时间序列噪声模型建立与分析[J].测绘学报, 2012, 41(4):496-503 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201203798533

    Li Zhao, Jiang Weiping, Liu Hongfei, et al. Noise Model Establishment and Analysis of IGS Reference Station Coordinate Time Series Inside China[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(4):496-503 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201203798533

    [42]

    Jiang W, Ma J, Li Z, et al. Effect of Removing the Common Mode Errors on Linear Regression Analysis of Noise Amplitudes in Position Time Series of a Regional GPS Network & a Case Study of GPS Stations in Southern California[J]. Advances in Space Research, 2018, 61(10):2521-2530 doi: 10.1016/j.asr.2018.02.031

    [43]

    Li Y, Xu C, Yi L, et al. A Data-Driven Approach for Denoising GNSS Position Time Series[J].Journal of Geodesy, 2018, 92(8):905-922 doi: 10.1007/s00190-017-1102-2

    [44]

    Amiri-Simkooei A. Noise in Multivariate GPS Position Time-Series[J].Journal of Geodesy, 2009, 83(2):175-187 doi: 10.1007/s00190-008-0251-8

    [45] 马俊.GPS坐标时间序列严密三维噪声模型建立方法[D].武汉: 武汉大学, 2018

    Ma Jun. The Establishment of Strict 3-D Noise Model in GPS Coordinate Time Series[D]. Wuhan: Wuhan University, 2018

    [46]

    Griffiths J, Ray J R. Sub-Daily Alias and Draconitic Errors in the IGS Orbits[J]. GPS Solutions, 2013, 17(3):413-422 doi: 10.1007/s10291-012-0289-1

    [47]

    Rodriguez-Solano C, Hugentobler U, Steigenberger P, et al. Impact of Earth Radiation Pressure on GPS Position Estimates[J]. Journal of Geodesy, 2012, 86(5):309-317 doi: 10.1007/s00190-011-0517-4

    [48]

    Ray J, Griffiths J, Collilieux X, et al. Subseasonal GNSS Positioning Errors[J].Geophysical Research Letters, 2013, 40(22):5854-5860 doi: 10.1002/2013GL058160

    [49]

    Li Z, Jiang W, Ding W, et al. Estimates of Minor Ocean Tide Loading Displacement and Its Impact on Continuous GPS Coordinate Time Series[J].Sensors, 2014, 14(3):5552-5572 doi: 10.3390/s140305552

    [50]

    Penna N, Stewart M. Aliased Tidal Signatures in Continuous GPS Height Time Series[J].Geophysical Research Letters, 2003, 30(23):2184 doi: 10.1029/2003GL018828/full

    [51]

    Penna N T, King M A, Stewart M P. GPS Height Time Series:Short-Period Origins of Spurious Long-Period Signals[J].Journal of Geophysical Research:Solid Earth, 2007, 112(B2):B02402 doi: 10.1029/2005JB004047/pdf

    [52]

    Petit G, Luzum B. IERS Conventions 2010. International Earth Rotation and Reference Systems Service[R]. IERS Technical Note, Germany, 2010

    [53]

    Petrie E J, King M A, Moore P, et al. Higher-Order Ionospheric Effects on the GPS Reference Frame and Velocities[J].Journal of Geophysical Research:Solid Earth, 2010, 115(B3):B03417 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2b2349f5ea0c16273b332846c7ec4164

    [54]

    Deng L, Jiang W, Li Z, et al. Assessment of Second and Third-Order Ionospheric Effects on Regional Networks:Case Study in China with Longer CMONOC GPS Coordinate Time Series[J].Journal of Geodesy, 2017, 91(2):207-227 doi: 10.1007/s00190-016-0957-y

    [55]

    Li Z, Chen W, Jiang W, et al. The Magnitude of Diurnal/Semidiurnal Atmospheric Tides (S1/S2) and Their Impacts on the Continuous GPS Coordinate Time Series[J].Remote Sensing, 2018, 10:1125 doi: 10.3390/rs10071125

    [56]

    Steigenberger P, Rothacher M, Schmid R, et al. Effects of Different Antenna Phase Center Models on GPS-Derived Reference Frames[M]. Berlin, Heidelberg:Springer, 2009

    [57]

    van Dam T M, Blewitt G, Heflin M B. Atmospheric Pressure Loading Effects on Global Positioning System Coordinate Determinations[J].Journal of Geophysical Research:Solid Earth, 1994, 99(B12):23939-23950 doi: 10.1029/94JB02122

    [58]

    Dong D, Fang P, Bock Y, et al. Anatomy of Apparent Seasonal Variations from GPS-Derived Site Position Time Series[J].Journal of Geophysical Research:Solid Earth, 2002, 107(B4):2075 doi: 10.1029-2001JB000573/

    [59]

    van Dam T, Altamimi Z, Collilieux X, et al. Topographically Induced Height Errors in Predicted Atmospheric Loading Effects[J].Journal of Geophysical Research:Solid Earth, 2010, 115(B7):B07415 doi: 10.1029/2009JB006810/full

    [60]

    Tregoning P, Dam T V. Atmospheric Pressure Loading Corrections Applied to GPS Data at the Observation Level[J].Geophysical Research Letters, 2005, 322(322):312-329 doi: 10.1029-2005GL024104/

    [61]

    Tregoning P, Watson C. Correction to "Atmospheric Effects and Spurious Signals in GPS Analyses"[J].Journal of Geophysical Research:Solid Earth, 2011, 116(B2):B02412 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d76649803fb9945785e6d8bf2ee8cb80

    [62]

    van Dam T, Collilieux X, Wuite J, et al. Nontidal Ocean Loading:Amplitudes and Potential Effects in GPS Height Time Series[J]. Journal of Geodesy, 2012, 86(11):1043-1057 doi: 10.1007/s00190-012-0564-5

    [63]

    Williams S D P, Penna N T. Non-Tidal Ocean Loading Effects on Geodetic GPS Heights[J].Geophysical Research Letters, 2011, 38(9):159-164 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=45d1a9fed6b2dfb8c59248380b881a89

    [64]

    Davis J L, Elósegui P, Mitrovica J X, et al. Climate-Driven Deformation of the Solid Earth from GRACE and GPS[J].Geophysical Research Letters, 2004, 31(24):357-370 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201005009

    [65]

    Tregoning P, Watson C, Ramillien G, et al. Detecting Hydrologic Deformation Using GRACE and GPS[J].Geophysical Research Letters, 2009, 36(36):139-156 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0216580663/

    [66]

    Fu Y, Freymueller J T. Seasonal and Long-Term Vertical Deformation in the Nepal Himalaya Constrained by GPS and GRACE Measurements[J].Journal of Geophysical Research:Solid Earth, 2012, 117(B3):B03407 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a508e381a8661cd8eb9d0366c51056c3

    [67]

    Tesmer V, Steigenberger P, van Dam T, et al. Vertical Deformations from Homogeneously Processed GRACE and Global GPS Long-Term Series[J]. Journal of Geodesy, 2011, 85(5):291-310 doi: 10.1007/s00190-010-0437-8

    [68]

    Yuan P, Li Z, Jiang W, et al. Influences of Environmental Loading Corrections on the Nonlinear Variations and Velocity Uncertainties for the Reprocessed Global Positioning System Height Time Series of the Crustal Movement Observation Network of China[J].Remote Sensing, 2018, 10(6):1-19

    [69]

    Prawirodirdjo L, Ben-Zion Y, Bock Y. Observation and Modeling of Thermoelastic Strain in Southern California Integrated GPS Network Daily Position Time Series[J].Journal of Geophysical Research:Solid Earth, 2006, 111(B2):B02408 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b2d1d44c5509701c23e52ac93cad528b

    [70]

    Tsai V C. A Model for Seasonal Changes in GPS Positions and Seismic Wave Speeds Due to Thermoelastic and Hydrologic Variations[J].Journal of Geophysical Research:Solid Earth, 2011, 116(B4):B04404 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=571629fc5e3313c2005508c17c37c658

    [71]

    Yan H, Chen W, Zhu Y, et al. Contributions of Thermal Expansion of Monuments and Nearby Bedrock to Observed GPS Height Changes[J].Geophysical Research Letters, 2009, 36(13):88-97 doi: 10.1029-2009GL038152/

    [72]

    Xu X, Dong D, Fang M, et al. Contributions of Thermoelastic Deformation to Seasonal Variations in GPS Station Position[J].GPS Solutions, 2017, 21(3):1-10 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3eaadcdf7b6b697a3ce1cb92fa52c6be

    [73]

    Wang K, Chen H, Jiang W, et al. Improved Vertical Displacements Induced by a Refined Thermal Expansion Model and Its Quantitative Analysis inGPS Height Time Series[J].Journal of Geophysics & Engineering, 2018, 15(2):554 http://adsabs.harvard.edu/abs/2018JGE....15..554W

    [74]

    Fang M, Dong D, Hager B H. Displacements Due to Surface Temperature Variation on a Uniform Elastic Sphere with Its Centre of Mass Stationary[J].Geophysical Journal International, 2014, 196(1):194-203 doi: 10.1093/gji/ggt335

    [75]

    Munekane H. Sub-Daily Noise in Horizontal GPS Kinematic Time Series Due to Thermal Tilt of GPS Monuments[J].Journal of Geodesy, 2013, 87(4):393-401 doi: 10.1007/s00190-013-0613-8

    [76]

    Wang K, Jiang W, Chen H, et al. Analysis of Seasonal Signal in GPS Short-Baseline Time Series[J].Pure and Applied Geophysics, 2018, 175(10):3485-3509 doi: 10.1007/s00024-018-1871-4

    [77]

    Tian Y, Shen Z K. Extracting the Regional Common-Mode Component of GPS Station Position Time Series from Dense Continuous Network[J].Journal of Geophysical Research:Solid Earth, 2016, 121(2):1080-1096 doi: 10.1002/2015JB012253

    [78]

    Ming F, Yang Y, Zeng A, et al. Spatiotemporal Filtering for Regional GPS Network in China Using Independent Component Analysis[J].Journal of Geodesy, 2017, 91(4):1-22 doi: 10.1007/s00190-016-0973-y

    [79]

    Jiang W, Peng Y, Hua C, et al. Annual Variations of Monsoon and Drought Detected by GPS:A Case Study in Yunnan, China[J].Scientific Reports, 2017, 7(1):5874 doi: 10.1038/s41598-017-06095-1

    [80]

    Wöppelmann G, Letetrel C, Santamaria A, et al. Rates of Sea-Level Change over the Past Century in a Geocentric Reference Frame[J].Geophysical Research Letters, 2009, 36(12):91-100 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6c9612fbb198858244c905d3ede65e86

  • 期刊类型引用(2)

    1. 牛全福,雷姣姣,刘博,王浩,张瑞珍,王刚. Sentinel-1/2影像在兰州北山削山造地范围识别中的应用. 自然资源遥感. 2025(01): 142-151 . 百度学术
    2. 辛星. 建筑不同施工阶段扬尘污染浓度变化特征研究. 环境科学与管理. 2024(10): 76-80 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  3654
  • HTML全文浏览量:  406
  • PDF下载量:  780
  • 被引次数: 5
出版历程
  • 收稿日期:  2018-09-04
  • 发布日期:  2018-12-04

目录

/

返回文章
返回