Helmert扰动位及其积分核函数的椭球实用公式

Helmert Disturbing Potential and Its Integral Kernel Function with Ellipsoidal Harmonic Formula

  • 摘要: 借助以地心参考椭球面为边界面的第二大地边值问题的理论,基于Helmert空间的Neumann边值条件,给定Helmert扰动位的椭球解表达式,并详细推导第二类勒让德函数及其导数的递推关系、Helmert扰动位函数的椭球积分解以及类椭球Hotine积分核函数的实用计算公式,便于后续椭球域第二大地边值问题的实际研究。

     

    Abstract: Based on the theory of the Neumann boundary value problem of geodesy on the geocentric reference ellipsoid as the boundary surface. In the Helmert space, derive the ellipsoidal series expansion of harmonic functions outside the referential ellipsoidal, the relationship of second kinds of associa-ted Legendre functions and its derivatives recurrence formula, Helmert disturbing potential and its integral kernel function with ellipsoidal harmonic formula, in order to research the Neumann boundary value problem of geodesy in the ellipsoidal coordinates.

     

/

返回文章
返回