云环境下基于CA-Markov的土地利用变化预测方法
Land Use Change Prediction Method Based on CA-Markov Model Under Cloud Computing Environment
-
摘要: 传统土地利用变化预测方法通常效率低, 无法满足土地利用变化大数据分析和处理的需求。采用MapReduce编程模型对元胞自动机-马尔可夫模型进行并行化扩展,设计了基于Hadoop的土地利用变化预测方法(land-use change prediction method based on cloud computing,Cloud-CMLP),并选取杭州市进行实验,包括:①不同数据量下Cloud-CMLP核心算法的运行效率实验;②利用Cloud-CMLP方法模拟杭州2013年土地利用变化,并将模拟结果与2013年遥感影像解译结果进行对比分析,验证了预测方法的正确性;③杭州2020年的土地利用变化模拟预测分析, 研究区中心地带受发达交通系统影响, 建设用地面积整体呈快速上升趋势, 且主要来源于农业用地的转换。Abstract: Traditional land-use change prediction methods are usually implemented by serial algorithms or semi-manual methods and they were often inefficient. This paper develops a parallel land-use change prediction method based on cloud lomputing (Cloud-CMLP), the map reduce programming model is used to parallelize and extend the cellular automata(CA)-Markov model. Taking Hangzhou as a study area, the experiments are conducted as follows: ① Efficiency tests are conducted to compare the core algorithms of Cloud-CMLP under the different number of data. ② The Cloud-CMLP method is used to simulate the land-use change in 2013, and the simulated results are compared with the 2013 remote sensing image classification results to verify the validity of Cloud-CMLP method. ③ The land-use change in 2020 is predicted and analyzed by using Cloud-CMLP, and the predicted results show that the land area of urban construction is rising rapidly and mainly come from the conversion of agricultural land.