基于Landsat OLI影像的典型湿地芦苇植被光能利用率遥感反演方法初探

Remote Sensing Estimation for Light Use Efficiency of Phragmites australis Based on Landsat OLI over Typical Wetlands

  • 摘要: 大尺度植被光能利用率(light use efficiency,LUE)的快速准确获取一直是限制植被生产力估算及相关研究的难题。当前LUE的研究存在取值不准、方法复杂、精度不高等问题,而遥感数据时间连续、空间尺度大、易获取的优势为LUE的准确估算提供了可能。以东北地区典型的芦苇湿地为研究对象,利用多时相遥感影像Landsat OLI(operational land imager)与植被指数,通过分析LUE、植被指数与植被叶绿素含量之间的关系,探讨利用遥感植被指数实现湿地植被LUE准确估算的可行性。结果表明:除增强植被指数(enhanced vegetation index,EVI)外,其余植被指数均有较强的芦苇湿地表征能力。LUE与叶绿素及植被指数之间存在密切关系,其中归一化植被指数(normalized difference vegetation index,NDVI)对LUE的敏感性最高(P < 0.01;R2=0.62),是本研究中表征芦苇LUE的最佳指数。研究验证了以叶绿素作为中间变量,借助遥感植被指数实现LUE便捷高效反演的理论假设,可为大尺度湿地植被生产力及碳循环等研究提供方法参考和思路借鉴。

     

    Abstract: As a key parameter in monitoring vegetation productivity by remote sensing driven model, rapid and accurate acquisition of vegetation light use efficiency (LUE) in large area has been a key problem. Selecting typical Phragmites australis wetland in Northeast China as study area, multitemporal Landsat OLI (operational land imager) image and the object-oriented classification method were used to extract Phragmites australis wetland. Based on the principle of vegetation physiology and ecology, the relationship among LUE, vegetation indexes and chlorophyll content was analyzed, the feasibility of accurate estimation of LUE for wetland vegetation by spectral vegetation index was discussed. Results show that areas of Phragmites australis wetland in Qixinghe Wetland, Chagan Lake Wetland and Shuangtai Estuary Wetland were 122.19, 75.29 and 439.61 km2, respectively, and overall classification accuracy was more than 82%. With the exception of EVI (enhanced vegetation index), other six vegetation indices showed the same spatial pattern characteristics with those of three wetlands. Totally, values of vegetation indices for different land covers were: cultivated land > Phragmites australis > other wetland vegetation > water body. There exists close relationship among LUE, chlorophyll and vegetation index. NDVI (normalized difference vegetation index) was most sensitive to LUE (P < 0.01;R2=0.62), which was the best one to characterize LUE of Phragmites australis in this study. This study verified the theoretical hypothesis that LUE could be inversed efficiently by remote sensing vegetation index taking chlorophyll as the intermediate variable, which can provide references for the study of vegetation productivity and carbon cycle on regional scale.

     

/

返回文章
返回