一种用于空间数据整合的建筑物面实体对齐方法

A Building Polygonal Object Alignment Approach for Spatial Data Integration

  • 摘要: 提出了一种用于空间数据整合的建筑物面实体对齐方法,可用来改善空间数据的位置精度。首先,采用基于最小外接矩形(minimum bounding rectangle,MBR)组合优化算法的匹配方法识别整合数据之间的同名实体;然后,提出基于几何相似性的成对约束谱匹配算法检测1:1、1:NMN同名实体之间的共轭点对;针对1:NMN匹配中不可避免存在弱对应点对和错误对应点对的问题,提出基于IGG1权重的最小二乘法来有效对齐同名实体。将所提出的方法应用于对齐较高位置精度的基础测绘地图数据和较低位置精度的谷歌地图数据中,结果表明,该方法不仅可检测存在复杂轮廓对应的1:NMN同名实体的共轭点对,而且可实现它们之间的有效对齐,使同名实体的位置信息差异最小化。

     

    Abstract: This paper proposes a building polygon alignment approach for spatial data integration which can be used to improve the spatial data position accuracy. Firstly, this paper uses the minimum bounding rectangle combinatorial optimization algorithm to identify corresponding objects between the integrated data. Then, a pairwise constraint spectrum matching algorithm based on geometric simila-rity is proposed to detect conjugate-point pairs of 1:1, 1:N, and M:N correspondence. The conjugate-point pairs from 1:N, and M:N correspondence inevitably have weak or error corresponding point pair, thus this paper proposes a least-squares algorithm based on the IGG1 weight to align the corresponding objects. The proposed method is applied to align base map data with higher positional accuracy and Google map data with lower positional accuracy. The results show that the proposed method can not only detect conjugate-point pairs of 1:N, and M:N correspondence with complex contours, but also can achieve the accurate alignment between them, and minimize their difference of positional information.

     

/

返回文章
返回