多时相NDVI与丰度综合分析的油菜无人机遥感长势监测

Combining Multi-temporal NDVI and Abundance from UAV Remote Sensing Data for Oilseed Rape Growth Monitoring

  • 摘要: 从无人机油菜遥感数据精准分析的角度,提出了一种新型的基于多时相混合光谱分析的油菜长势监测方法。根据油菜冠层结构与田间特征确定不同生长期端元组合,并通过线性解混模型获取丰度。针对油菜产量积累过程,分析3个生长期端元丰度与产量的相关性。在此基础上,对比分析典型归一化植被指数(normalized difference vegetation index,NDVI)、端元丰度以及两者综合3种自变量方案下建立的多时相线性估产模型精度。实验结果表明,相比广泛使用的NDVI,选取合适的丰度组合数据结合NDVI进行多时相估产具有更好的效果,且不同种植方式下的最优丰度组合相同,适用于产量的提前预测。由此说明,丰度数据能从植株发育与产量构成角度对NDVI进行亚像元层次的修正,具有较强的稳定性。

     

    Abstract: Using unmanned aerial vehicle (UAV) remote sensing method, this paper proposes a new approach to monitor the situation for oilseed rape based on multi-temporal spectral analysis. According to the rape canopy structure, this experiment determines the end-member combination of different growth stages and obtains the abundance data with the linear decomposition model. Aimed at the accumulation process of rape yield, we analyze the relation between the abundance data in three growth stages and the final yield, and propose three independent variable schemes to establish the multi-temporal rape yield estimation model. Experimental analysis shows that the combination of abundance and normalized difference vegetation index (NDVI) is more effective than the widely used NDVI. And the optimal abundance combinations are the same under different planting methods. This model is also suitable for different rape planting patterns. Experiment results verify the strong stability of the proposed model, and the multi-temporal combination of abundance data and NDVI can improve the effect of yield estimation model.

     

/

返回文章
返回