星地协同的卫星视频高效压缩方法

肖晶, 胡瑞敏

肖晶, 胡瑞敏. 星地协同的卫星视频高效压缩方法[J]. 武汉大学学报 ( 信息科学版), 2018, 43(12): 2197-2204. DOI: 10.13203/j.whugis20180159
引用本文: 肖晶, 胡瑞敏. 星地协同的卫星视频高效压缩方法[J]. 武汉大学学报 ( 信息科学版), 2018, 43(12): 2197-2204. DOI: 10.13203/j.whugis20180159
XIAO Jing, HU Ruimin. Satellite-Earth Coordinated High Efficiency Compression of Satellite Video Data[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2197-2204. DOI: 10.13203/j.whugis20180159
Citation: XIAO Jing, HU Ruimin. Satellite-Earth Coordinated High Efficiency Compression of Satellite Video Data[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2197-2204. DOI: 10.13203/j.whugis20180159

星地协同的卫星视频高效压缩方法

基金项目: 

国家自然科学基金 91738302

国家自然科学基金 61671336

中央高校基本科研业务费专项资金 413000048

测绘遥感信息工程国家重点实验室开放研究基金 17E03

详细信息
    作者简介:

    肖晶, 博士, 副教授, 主要从事卫星视频压缩和传输的理论与方法研究。jing@whu.edu.cn

    通讯作者:

    胡瑞敏, 博士, 教授。hrm@whu.edu.cn

  • 中图分类号: P236

Satellite-Earth Coordinated High Efficiency Compression of Satellite Video Data

Funds: 

The National Natural Science Foundation of China 91738302

The National Natural Science Foundation of China 61671336

the Fundamental Research Funds for the Central Universities 413000048

Open Research Fund of State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University 17E03

More Information
    Author Bio:

    XIAO Jing, PhD, associate professor, specializeds in video compression and processing. E-mail: jing@whu.edu.cn

    Corresponding author:

    HU Ruimin, PhD, professor. E-mail: hrm@whu.edu.cn

  • 摘要: 新兴的视频卫星数据采集速率与星地实时传输速率间存在巨大差异。传统视频编码技术通过去除单个视频中短时局部冗余以降低待传输数据量,但仍无法满足在现有星地传输带宽下实时数据传输的需求。长程背景冗余由多个遥感视频对同一观测区域重复拍摄所引发,广泛存在于具有一定时间跨度的重复拍摄的卫星遥感视频数据中。针对这一冗余去除问题,首先探讨了影响地貌背景变化的主要因素,提出了长程背景参考字典;其次,提出了基于长程背景参考字典的参考帧生成方法;最后,提出了基于长程背景参考的卫星视频编解码框架。实验表明,通过引入长程背景字典参考,卫星视频压缩后码率较现有方法降低64.38%,有助于推动卫星视频实时监测的发展与应用。
    Abstract: Video satellites have great potential for military and civil use due to their capabilities in the dynamic remote surveillance. However, the video data collection rate is far higher than the bandwidth between satellite and earth. Video coding is the technology to compression the video data to a low bitrate for transmission, by eliminating the local spatial/temporal redundancies, but there is still a gap between the bitrate of the video data and the satellite-earth bandwidth. Long-term background redundancy is a new type of redundancy existing in the remote satellite video data, caused by the repeated recording of the same place. This type of redundancy becomes significant as the video data of the same place increases. In this paper, we first discuss the factors causing the change of the background, and propose the long-term background reference library. After that, we propose the method for the background reference generation and the coding framework for satellite video data. Experimental results show that 64.38% reduction on video data bitrate can be achieved by using the proposed method, compared to the H.264 video coding standard. The proposed method will boost the applications of video satellite data in the surveillance field.
  • 图  1   同一地区不同时间拍摄的两端视频截图s

    Figure  1.   Appearances of Two Video Clips Shot of the Same Location at Different Time by Two Different Satellites

    图  2   星地协同的卫星视频压缩流程示意图

    Figure  2.   Overall Framework of Satellite-Earth Coordinated Compression of Satellite Video Data

    图  3   吉林一号4段卫星视频首帧展示图

    Figure  3.   The First Frame of Four Satellite Videos in Satellite Jilin-1

    图  4   参考影像,视频帧来自测试视频城区1

    Figure  4.   Reference Images, Sample Frame Came from Satellite Video Clips Urban-1

    图  5   本文算法与H.264的码率-质量曲线结果对比

    Figure  5.   RD Curves Comparison of H.264 and the Proposed Method

    表  1   本文压缩算法与H.264压缩算法的对比数据

    Table  1   The Overall BD-PSNR and BD-Rate of the Proposed Method and H.264

    视频序列 BD-PSNR/ dB BD-Rate/%
    城区1 6.87 -71.42
    城区2 5.59 -63.82
    农田 6.39 -76.26
    海边 2.89 -46.02
    平均值 5.44 -64.38
    下载: 导出CSV
  • [1] 李德仁, 余涵若, 李熙.基于夜光遥感影像的"一带一路"沿线国家城市发展时空格局分析[J].武汉大学学报·信息科学版, 2017, 42(6):711-720 http://ch.whu.edu.cn/CN/abstract/abstract5742.shtml

    Li Deren, Yu Hanruo, Li Xi. The Spatial-Temporal Pattern Analysis of City Development in Countries Along the Belt and Road Initiative Based on Night-Time Light Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6):711-720 http://ch.whu.edu.cn/CN/abstract/abstract5742.shtml

    [2]

    Sullivan G J, Ohm J, Han W, et al. Overview of the High Efficiency Video Coding Standard[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2012, 22(12):1649-1668 doi: 10.1109/TCSVT.2012.2221191

    [3]

    Wiegand T, Sullivan G J, Bjontegaard G, et al. Overview of the H.264/AVC Video Coding Standard[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2003, 13(7):560-576 doi: 10.1109/TCSVT.2003.815165

    [4]

    Yin L, Hu R, Chen S, et al. Block-Based Global and Multiple-Reference Scheme for Surveillance Video Coding[C]. Pacific Rim Conference on Multimedia, Gwangju, Korea, 2015 doi: 10.1007%2F978-3-319-24075-6_21

    [5]

    Zhang X, Huang T, Tian Y, et al. Background-Modeling-Based Adaptive Prediction for Surveillance Video Coding[J]. IEEE Transactions on Image Processing, 2014, 23(2):769-784 doi: 10.1109/TIP.2013.2294549

    [6]

    Zhang X, Tian Y, Huang T, et al. Optimizing the Hierarchical Prediction and Coding in HEVC for Surveillance and Conference Videos with Background Modeling[J]. IEEE Transactions on Image Processing, 2014, 23(10):4511-4526 doi: 10.1109/TIP.2014.2352036

    [7] 黄铁军, 张贤国, 田永鸿, 等.支持监控视频高效压缩与识别的IEEE 1857标准[J].电子产品世界, 2013, 20(7):22-26 http://d.old.wanfangdata.com.cn/Periodical/dzcpsj201307009

    Huang Tiejun, Zhang Xianguo, Tian Yonghong, et al. IEEE 1857 Standard for High Efficiency Surveillance Video Compression and Recognition[J]. Electronic Engineering and Products World, 2013, 20(7):22-26 http://d.old.wanfangdata.com.cn/Periodical/dzcpsj201307009

    [8]

    Yue H, Sun X, Yang J, et al. Cloud-Based Image Coding for Mobile Devices-Toward Thousands to One Compression[J]. IEEE Transactions on Multimedia, 2013, 15(4):845-857 doi: 10.1109/TMM.2013.2239629

    [9]

    Shi Z, Sun X, Wu F. Feature-Based Image Set Compression[C]. IEEE International Conference on Multimedia and Expo, California, USA, 2013 http://ieeexplore.ieee.org/document/6607570/

    [10]

    Wu H, Sun X, Yang J, et al. Lossless Compression of JPEG Coded Photo Collections[J]. IEEE Transactions on Image Processing, 2016, 25(6):2684-2696 doi: 10.1109/TIP.2016.2551366

    [11]

    Wang H, Tian T, Ma M, et al. Joint Compression of Near-Duplicate Videos[J]. IEEE Transactions on Multimedia. 2017, 19(5):908-920 doi: 10.1109/TMM.2016.2645398

    [12]

    Ma C, Liu D, Peng X, et al. Surveillance Video Coding with Vehicle Library[C].IEEE International Conference on Image Processing, Beijing, China, 2017 http://ieeexplore.ieee.org/document/8296285/

    [13]

    Xiao J, Liao L, Hu J, et al. Exploiting Global Redundancy in Big Surveillance Video Data for Efficient Coding[J]. Cluster Computing, 2015, 18(2):531-540 doi: 10.1007/s10586-015-0434-z

    [14]

    Xiao J, Hu R, Liao L, et al. Knowledge-Based Coding of Objects for Multi-source Surveillance Vi-deo Data[J]. IEEE Transactions on Multimedia, 2016, 18(9):1691-1706 doi: 10.1109/TMM.2016.2581590

    [15] 王峰, 尤红建, 傅兴玉.应用于SAR图像配准的自适应SIFT特征均匀分布算法[J].武汉大学学报·信息科学版, 2015, 40(2):159-163 http://ch.whu.edu.cn/CN/abstract/abstract3178.shtml

    Wang Feng, You Hongjian, Fu Xingyu. Auto-adaptive Well-Distributed Scale-Invariant Feature for SAR Images Registration[J]. Geomatics and Information Science of Wuhan University, 2015, 40(2):159-163 http://ch.whu.edu.cn/CN/abstract/abstract3178.shtml

    [16] 肖雄武, 李德仁, 郭丙轩, 等.一种具有视点不变性的倾斜影像快速匹配方法[J].武汉大学学报·信息科学版, 2016, 41(9):1151-1159 http://ch.whu.edu.cn/CN/abstract/abstract5522.shtml

    Xiao Xiongwu, Li Deren, Guo Bingxuan, et al. A Robust and Rapid Viewpoint-Invariant Matching Method for Oblique Images[J]. Geomatics and Information Science of Wuhan University, 2016, 41(9):1151-1159 http://ch.whu.edu.cn/CN/abstract/abstract5522.shtml

    [17]

    Lowe D G. Distinctive Image Features from Scale-Invariant Keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110 doi: 10.1023/B:VISI.0000029664.99615.94

    [18]

    Sedaghat A, Ebadi H. Distinctive Order Based Self-Similarity Descriptor for Multi-sensor Remote Sensing Image Matching[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 108:62-71 doi: 10.1016/j.isprsjprs.2015.06.003

    [19]

    Reinhard E, Ashikhmin M, Gooch B, et al. Color Transfer Between Image[J]. IEEE Computer Graphics & Applications, 2002, 21(5):34-41 http://d.old.wanfangdata.com.cn/Periodical/bjlgdxxb-e201002013

    [20] 刘韬.国外视频卫星发展研究[J].国际太空, 2014, 429: 50-56 http://www.cnki.com.cn/Article/CJFDTotal-GJTK201409015.htm

    Liu Tao. Development of Video Satellite[J]. Space International, 2014, 429:50-56 http://www.cnki.com.cn/Article/CJFDTotal-GJTK201409015.htm

    [21]

    Bjontegaard G. Calculation of Average PSNR Difference Between RD-curves[C]. Document VCEG-M33, ITU-T VCEG Meeting, Austin, TX, USA,2001 https://www.researchgate.net/publication/244455155_Calculation_of_average_PSNR_differences_between_RD-Curves

图(5)  /  表(1)
计量
  • 文章访问数:  1921
  • HTML全文浏览量:  192
  • PDF下载量:  226
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-07
  • 发布日期:  2018-12-04

目录

    /

    返回文章
    返回