北斗三频精密单点定位模型比较及定位性能分析

Model Comparison and Performance Analysis of Triple-frequency BDS Precise Point Positioning

  • 摘要: 在Trip软件的基础上实现了北斗三频无电离层两两组合、三频消电离层组合和三频非组合精密单点定位(precise point positioning,PPP)算法。利用12个陆态网观测站的北斗三频观测数据对3种三频PPP定位模型及传统的双频无电离层组合PPP模型的定位性能进行分析。试验结果表明,对大多数测站,3种三频PPP模型静态定位精度水平方向优于1 cm,高程方向优于2 cm,动态定位精度水平方向优于4 cm,高程方向优于6 cm;3种三频PPP模型静态收敛时间约为120 min,动态收敛时间约180 min;相比于传统的双频PPP模型,三频PPP模型的定位精度有所提高,其中,三频非组合模型静态单天解RMS在水平方向和高程方向分别提高36.1%和6.3%,动态单天解RMS在水平方向和高程方向分别提高9.1%和6.3%。

     

    Abstract: Three kinds of triple-frequency precise point positioning (PPP) models containing two ionosphere-free combined models, the model of triple ionosphere-free linear combination and uncombined model are achieved based on Trip software. Triple-frequency PPP models and traditional dual-frequency ionosphere-free combined PPP model are tested by BDS data from 12 stations of Crustal Movement Obervation Network of China. The results show that for most stations, daily static positioning accuracy is better than 1 cm in horizontal, 2 cm in vertical, and is better than 4 cm in horizontal and 6 cm in vertical for kinematic positioning accuracy. The average convergence time for each triple-frequency is about 120 min for static case and about 180 min for kinematic case. Comparing with traditional dual-frequency PPP models, triple-frequency PPP models can obtain higher accuracy, to be specific, root mean square (RMS) in daily static solutions of triple-frequency uncombined PPP models can be improved by 36.1% and 6.3% horizontally and vertically, and RMS in daily kinematic solutions can be improved by 9.1% and 6.3% horizontally and vertically.

     

/

返回文章
返回