嫦娥三号落月段中欧联合测量弱信号相位估计

Phase Estimation for Inter-agency Interferometric Tracking in Chang'E-3 Powered Descent Flight

  • 摘要: 干涉测量技术对于直接获取月球和深空探测器空间方位,开展科学研究具有非常重要的意义。提出了一种利用高品质因数天线获取的探测器高动态飞行段估计信息,对远距离异地较低接收品质因数天线接收的弱信号进行补偿,进而实现弱信号窄带跟踪的方法。利用嫦娥三号动力落月段中欧联合干涉测量获取的原始数据进行了验证,结果表明,基于该方法补偿后的弱信号只需采用噪声带宽5 Hz的数字锁相环即可实现精确相位跟踪,对新诺舍站DOR(differential one-way ranging)音信号的相位估计标准差低至3.4°。该方法可应用于中国未来月球和深空探测,以及机构间干涉测量交互支持。

     

    Abstract: Very long baseline interferometry plays a critical role on the orbit determination of the lunar and deep space probes, as well as the radio science research. Based on a first-order approximation model of the probe's topocentric range-rate, this paper proposes a new narrow band tracking method for the weak signal received by an antenna with relatively small aperture. As long as the Doppler dynamics has been estimated from the signal received by a large antenna with high G/T value, the weak signal, received by the small antenna during the same time duration, could be Doppler compensated. The raw data acquired by Chinese Jiamusi station and European Space Agency's New Norcia station have been processed, and the results demonstrate the effectiveness of this method. Digital phase locked loop with 5 Hz noise bandwidth could be used to track the differential one-way ranging(DOR) tone received by New Norcia, after Doppler compensation by estimation results from Jiamusi carrier tracking, and the root mean square of the tracking phase errors for DOR tone is around 3.4 degree. This method could be used in the radio metric navigation for the future lunar and deep space missions, as well as the inter-agency cross-supports.

     

/

返回文章
返回