Scheme and Key Techniques for Construction of New-Generation Lunar Global Control Network Using Multi-Mission Data
-
摘要: 目前广泛应用的月球统一控制网2005(Unified Lunar Control Network 2005,ULCN2005)是由1994年的克莱门汀(Clementine)影像和之前的遥感数据联合平差构建的。提出利用21世纪获取的分辨率更高、精度更好的多探测任务数据,建立新一代月球控制网的方案与关键技术。该方案基于全球覆盖的月球遥感影像与激光高度计数据的联合平差,同时利用在月球轨道侦察器窄角相机影像上能高精度定位的绝对定位精度在厘米级的5个激光棱角反射标志点作为绝对控制。此外,还通过新的无线电测量方法对嫦娥三号着陆器进行高精度定位,将其定位结果也作为一个新的绝对控制数据。新一代控制网构建的重点有高精度的轨道器严密及通用成像几何模型的构建、多任务多模态数据间的多尺度特征提取与匹配、最优化多重覆盖影像的选择、全月球整体平差等。基于新的数据和技术,新一代月球控制网的精度和点的密度有望远超ULCN2005。Abstract: The widely used Unified Lunar Control Network 2005 (ULCN2005) was built based on a combined photogrammetric solution of Clementine images acquired in 1994 and earlier photographic data. In this paper, we present a scheme and key techniques for construction of a new-generation lunar global control network using multi-mission data newly acquired in the 21st century, which have much better resolution and precision than the old data acquired in the last century. The new control network will be based on a combined photogrammetric solution of an extended global image and laser altimetry network. The five-lunar laser ranging retro-reflectors, which can be identified in LROC NAC images and have centimeter-level 3D position accuracy, will be used as absolute control points in the least squares photogrammetric adjustment. Recently, a new radio total phase ranging method has been developed and used for high-precision positioning of Chang'E-3 lander; this shall offer a new absolute control point. Systematic methods and key techniques will be developed or enhanced, including rigorous and generic geometric modeling of orbital images, multi-scale feature extraction and matching among heterogeneous multi-mission remote sensing data, optimal selection of images at areas of multiple image coverages, and large-scale adjustment computation, etc. Based on the high-resolution new datasets and developed new techniques, the new generation of global control network is expected to have much higher accuracy and point density than the ULCN2005.
-
-
[1] Schimerman L A. Lunar Cartographic Dossier, Volume I[R]. NASA and the Defense Mapping Agency, St. Louis, Missouri, USA, 1973
[2] Davies M E. The Unified Lunar Control Network[J]. Journal of Geophysics Research, 1994, 99(E11):23211-23214 doi: 10.1029/94JE01865
[3] Edwards K E. Global Digital Mapping of the Moon[C]. The 27th Annual Lunar and Planetary Science Conference, Houston, Texas, USA, 1996 https://www.researchgate.net/publication/234196307_Global_Digital_Mapping_of_the_Moon
[4] Archinal B A, Rosiek M R, Kirk R L, et al. The Unified Lunar Control Network 2005[OL]. http://pubs.usgs.gov/of/2006/1367/ULCN2005-OpenFile.pdf, 2006
[5] Archinal B A, Rosiek M R, Kirk R L, et al. Final Completion of the Unified Lunar Control Network 2005 and Topographic Model[C]. The 38th Lunar and Planetary Science Conference, League City, Texas, USA, 2007 http://adsabs.harvard.edu/abs/2007LPI....38.1904A
[6] 邸凯昌, 刘斌, 刘召芹, 等.月球遥感制图回顾与展望[J].遥感学报, 2016, 20(5):1230-1242 http://d.old.wanfangdata.com.cn/Periodical/ygxb201605043 Di Kaichang, Liu Bin, Liu Zhaoqin, et al. Review and Prospect of Lunar Mapping Using Remote Sensing Data[J].Journal of Remote Sensing, 2016, 20(5):1230-1242 http://d.old.wanfangdata.com.cn/Periodical/ygxb201605043
[7] Liu Z, Di K, Peng M, et al. High Precision Lan-ding Site Mapping and Rover Localization for Chang'E-3 Mission[J]. Science China-Physics Mechanics & Astronomy, 2015, 58(1):1-11 http://cn.bing.com/academic/profile?id=33373f567570360ff98271be63c8a999&encoded=0&v=paper_preview&mkt=zh-cn
[8] Kirk R, Archinal B, Gaddis L, et al. Lunar Cartography:Progress in the 2000s and Prospects for the 2010s[J]. International Archives of the Photogrammery, Remote Sensing and Spatial Information Sciences, 2012, 39(B4):489-494 http://adsabs.harvard.edu/abs/2012ISPAr39B4..489K
[9] Zuber M T, Smith D E, Watkins M M, et al. Gra-vity Field of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) Mission[J]. Science, 2013, 339(6120):668-671 doi: 10.1126/science.1231507
[10] Mazarico E, Rowlands D D, Neumann G A, et al. Orbit Determination of the Lunar Reconnaissance Orbiter[J]. Journal of Geodesy, 2012, 86(3):193-207 doi: 10.1007/s00190-011-0509-4
[11] 刘斌, 邸凯昌, 王保丰, 等.基于LRO NAC影像的嫦娥三号着陆点高精度定位与精度验证[J].科学通报, 2015, 60(28-29):2750-2757 http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2015Z2008.htm Liu Bin, Di Kaichang, Wang Baofeng, et al. Positioning and Precision Validation of Chang'E-3 Lander Based on Multiple LRO NAC Images[J]. Chinese Science Bulletin, 2015, 60(28-29):2750-2757 http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2015Z2008.htm
[12] Zhao B, Yang J, Wen D, et al. Overall Scheme and On-orbit Images of Chang'E-2 Lunar Satellite CCD Stereo Camera[J]. Sci China Technol Sci, 2011, 54(9):2237-2242 doi: 10.1007/s11431-011-4519-5
[13] Zuo W, Li C L, Zhang Z B. Scientific Data and Their Release of Chang'E-1 and Chang'E-2[J]. China J Geochem, 2014, 33:24-44 doi: 10.1007/s11631-014-0657-3
[14] Di K, Liu Y, Liu B, et al. A Self-calibration Bundle Adjustment Method for Photogrammetric Processing of Chang'E-2 Stereo Lunar Imagery[J]. IEEE Transaction on Geoscience and Remote Sensing, 2014, 52(9):5432-5442 doi: 10.1109/TGRS.2013.2288932
[15] Li C L, Ren X, Liu J J, et al. A New Global and High Resolution Topographic Map Product of the Moon from Chang'E-2 Image Data[C]. The 46th Lunar Planetary Science Conference, Woodlands, Texas, USA, 2015 http://adsabs.harvard.edu/abs/2015LPI....46.1638L
[16] Robinson M, Brylow S, Tschimmel M, et al. Lunar Reconnaissance Orbiter Camera (LROC) Instrument Overview[J]. Space Science Reviews, 2010, 150:81-124 doi: 10.1007/s11214-010-9634-2
[17] Scholten F, Oberst J J, Matz K D, et al. GLD100:The Near-Global Lunar 100 m Raster DTM from LROC WAC Stereo Image Data[J]. Journal of Geo-physical Research, 2012, 117(E12):E00H17, DOI: 10.1029/2011JE003926
[18] Estes N M, Hanger C D, Licht A A, et al. Lunaserv Web Map Service: History, Implementation Details, Development, and Uses[C]. The 44th Lunar Planet Sci Conf, Woodlands, Texas, USA, 2013 http://adsabs.harvard.edu/abs/2013LPICo1719.2609E
[19] Haruyama J, Hara S, Hioki K, et al. Lunar Global Digital Terrain Model Dataset Produced from SELENE (Kaguya) Terrain Camera Stereo Observations[C]. The 43rd Lunar and Planetary Science Conference, Woodlands, Texas, USA, 2012 http://adsabs.harvard.edu/abs/2012LPI....43.1200H
[20] Smith D E, Zuber M T, Jackson G B, et al. The Lunar Orbiter Laser Altimeter Investigation on the Lunar Reconnaissance Orbiter Mission[J]. Space Science Review, 2010, 150:209-241 doi: 10.1007/s11214-009-9512-y
[21] Barker M K, Mazarico E, Neumann G A, et al. A New Lunar Digital Elevation Model from the Lunar Orbiter Laser Altimeter and SELENE Terrain Ca-mera[J]. Icarus, 2016, 273:346-355 doi: 10.1016/j.icarus.2015.07.039
[22] Smith D E, Zuber M T, Neumann G A, et al. Summary of the Results from the Lunar Orbiter Laser Altimeter After Seven Years in Lunar Orbit[J]. Icarus, 2017, 283:70-91 doi: 10.1016/j.icarus.2016.06.006
[23] Ping J S. Experiment of Lunar Radio Phase Ranging Using Chang'E-3 Lander[C]. The 47th Lunar and Planetary Science Conference, Woodlands, Texas, USA, 2016 http://adsabs.harvard.edu/abs/2016LPI....47.1339P
[24] Speyerer E J, Wagner R V, Robinson M S, et al. Pre-flight and Onorbit Geometric Calibration of the Lunar Reconnaissance Orbiter Camera[J]. Space Science Reviews, 2016, 200:357-392 doi: 10.1007/s11214-014-0073-3
[25] Wu B, Hu H, Guo J. Integration of Chang'E-2 Imagery and LRO Laser Altimeter Data with a Combined Block Adjustment for Precision Lunar Topographic Modeling[J]. Earth and Planetary Science Letters, 2014, 391:1-15 doi: 10.1016/j.epsl.2014.01.023
[26] Wu B, Liu W C. Calibration of Boresight Offset of LROC NAC Imagery for Precision Lunar Topographic Mapping[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 128:372-387 doi: 10.1016/j.isprsjprs.2017.04.012
[27] Liu Y, Di K. Evaluation of Rational Function Model for Geometric Mo-deling of Chang'E-1 CCD Images[J]. International Achieves of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2011, 38:121-125 http://adsabs.harvard.edu/abs/2011ISPAr3825W.121L
[28] Liu B, Liu Y, Di K, et al. Block Adjustment of Chang'E-1 Images Based on Rational Function Mo-del[C]. The 18th National Symposium on Remote Sensing of China, Beijing, 2014
[29] Liu B, Xu B, Di K, et al. A Solution to Low RFM Fitting Precision of Planetary Orbiter Images Caused by Exposure Time Changing[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, 43:441-448 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004699452
[30] Kang Z, Luo Z, Hu T, et al. Automatic Extraction and Identification of Lunar Impact Craters Based on Optical Data and DEMs Acquired by the Chang'E Satellites[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(10):4751-4761 doi: 10.1109/JSTARS.2015.2481407
[31] Lowe D G. Distinctive Image Features from Scale-Invariant Keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110 doi: 10.1023/B:VISI.0000029664.99615.94
[32] Bay H, Ess A, Tuytelaars T, et al. SURF:Speeded Up Robust Features[J]. Computer Vision and Image Understanding (CVIU), 2008, 110(3):346-359 doi: 10.1016/j.cviu.2007.09.014
[33] Alcantarilla P F, Nuevo J, Bartoli A. Fast Explicit Diffusion for Accelerated Features in Nonlinear Scale Spaces[C]. British Machine Vision Confe-rence, Bristol, UK, 2013
[34] Becker K J, Archinal B A, Hare T M, et al. Criteria for Automated Identification of Stereo Image Pairs[C]. The 46th Lunar and Planetary Science Conference, Woodlands, Texas, USA, 2015 http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2015LPI....46.2703B&db_key=AST&link_type=ABSTRACT
[35] Di K, Xu B, Liu B, et al. Geopositioning Precision Analysis of Multiple Image Triangulation Using LRO NAC Lunar Images[C]. The 23rd ISPRS Congress, Commission Ⅳ, Prague, Czech, 2016 http://adsabs.harvard.edu/abs/2016ISPAr41B4..369D