Multi-Scale ARMA Residual Correction Model for Detecting Pre-earthquake Ionospheric Anomalies
-
摘要: 为提高电离层总电子含量(total electronic content,TEC)扰动探测参考背景值的预测精度,提出了多尺度自回归移动平均(autoregressive moving average,ARMA)残差修正模型。通过对比该方法、ARMA模型、四分位距法(inter quartile range,IQR)及滑动时窗法对TEC背景值的预测精度,结果显示修正模型预测的TEC背景值平均相对精度为89.78%,分别比ARMA模型、IQR及滑动时窗法高5.18%、1.41%和1.42%,且预测值的残差绝对值小于等于3.0 TECU的百分比为91.67%,明显优于其他3种方法,说明修正模型探测震前TEC异常是可行的。利用该方法探测2013-04-20芦山县Mw7.0级地震震前电离层TEC扰动情况,验证了该方法的有效性。实验结果表明,震前第9天和第13天电离层明显的正异常和震前第1~4天明显的负异常极可能是孕育地震引起的,且正异常主要出现在08:00-10:00 UT,而负异常主要集中在0:00-14:00 UT。Abstract: To improve the prediction accuracy of the background values of the ionospheric total electronic content (TEC) disturbance, we have proposed multi-scale autoregressive moving average (ARMA) residual correction model (MARCM) by comparing the precision of this method, ARMA model, inter quartile range(IQR)and sliding window method in predicting the ionospheric total electronic content reference background values. The results show that the average relative accuracy of TEC background value predicted by MARCM is 89.78%, which is higher than the ARMA model, IQR and sliding window method with values of 5.18%, 1.41% and 1.42% respectively and show that the percentage of absolute residual values less than or equal to 3.0 TECU predicted by MARCM is 91.67%, significantly better than the other three methods, It is demorstrated that using MARCM to detect pre-earthquake ionospheric anomalies is feasible. We use this method to detect pre-earthquake ionospheric anomalies of the earthquake happened in Lushan on April 20, 2013, and prove the effectiveness of the proposed method. The results show that obviously ionospheric positive anomalies on 9 and 13 days before the earthquake and apparently ionospheric negative anomalies on 1 to 4 days before the earthquake, are most likely to be caused by the earthquake. And positive anomalies mainly emerge in the 08:00 UT to 10:00 UT, the negative anomalies are mainly concentrated in 00:00 UT to 14:00 UT
-
Keywords:
- multi-scale /
- ARMA /
- residual correction /
- earthquake /
- ionospheric TEC anomaly
-
-
表 1 4种方法背景值预测精度统计
Table 1 Prediction Accuracy Statistics of Background Values of Four Methods
日期 MARCM ARMA模型 IQR 滑动窗口法 Δ/TECU σ/TECU P/% Δ/TECU σ/TECU P/% Δ/TECU σ/TECU P/% Δ/TECU σ/TECU P/% 2013-02-21 -0.61 1.47 90.55 1.25 1.18 89.96 1.99 0.87 87.70 2.06 1.05 87.55 2013-02-22 0.54 1.43 90.86 2.05 1.69 82.73 2.09 1.22 84.87 2.13 1.14 85.13 2013-02-23 0.12 1.56 90.85 2.57 1.09 83.48 2.82 2.21 83.91 2.79 2.24 83.77 2013-02-24 -0.77 1.48 90.95 2.02 1.73 81.68 2.13 0.87 85.77 2.11 0.81 86.01 2013-02-25 0.29 1.65 89.48 1.89 1.63 82.90 2.04 0.92 86.81 2.05 0.94 86.65 2013-02-26 -0.61 2.51 88.04 0.31 3.00 82.01 0.82 1.08 92.17 0.87 1.11 91.44 2013-02-27 -0.28 2.67 86.59 0.81 2.83 82.91 1.11 1.54 89.86 1.19 1.44 89.41 2013-02-28 -0.59 1.92 90.92 -0.41 2.07 91.10 -0.21 0.80 95.86 -0.18 0.58 96.95 平均值 -0.24 1.84 89.78 1.31 1.90 84.60 1.60 1.19 88.37 1.63 1.16 88.36 表 2 4种方法预报残差分类百分比统计/%
Table 2 Percentage Statistics of Forecast Residual Classification of Four Methods/%
方法 绝对残差分布/ TECU |Δ|≤3.0 3.0 < |Δ|≤4.0 4.0 < |Δ|≤5.0 5.0 < |Δ|≤6.0 |Δ|>6.0 MARCM 91.67 3.13 4.16 1.04 0 ARMA模型 72.92 14.58 10.42 2.08 0 IQR 84.37 10.42 3.13 0 2.08 滑动窗口法 85.42 10.42 2.08 1.04 1.04 -
[1] 张小红, 任晓东, 吴风波, 等.震前电离层TEC异常探测新方法[J].地球物理学报, 2013, 56(2):441-449 http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201302008 Zhang Xiaohong, Ren Xiaodong, Wu Fengbo, et al. A New Method for Detection of Pre-earthquake Ionospheric Anomalies[J]. Chinese Journal of Geophysics, 2013, 56(2):441-449 http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201302008
[2] 祝芙英, 吴云, 林剑, 等.震前电离层TEC异常探测方法研究[J].大地测量与地球动力学, 2009, 29(3):50-54 http://d.old.wanfangdata.com.cn/Periodical/dkxbydz200903009 Zhu Fuying, Wu Yun, Lin Jian, et al. Study on Method of Detecting Ionospheric the Anomaly Before Earthquake[J]. Journal of Geodesy and Geodynamics, 2009, 29(3):50-54 http://d.old.wanfangdata.com.cn/Periodical/dkxbydz200903009
[3] 林剑, 吴云, 祝芙英.震前电离层TEC异常扰动的研究[J].武汉大学学报·信息科学版, 2009, 34(8):975-978 http://ch.whu.edu.cn/CN/abstract/abstract1317.shtml Lin Jian, Wu Yun, Zhu Fuying. Ionosphere TEC Anomalous Disturbance of Pre-seism[J]. Geomatics and Information Science of Wuhan University, 2009, 34(8):975-978 http://ch.whu.edu.cn/CN/abstract/abstract1317.shtml
[4] Shah M, Jin S.Statistical Characteristics of Seismoio-nospheric GPS TEC Disturbances Prior to Global Mw ≥ 5.0 Earthquakes (1998-2014)[J]. Journal of Geodynamics, 2015, 92:42-49 doi: 10.1016/j.jog.2015.10.002
[5] Tang J, Yao Y, Zhang L.Temporal and Spatial Iono-spheric Variations of 20 April 2013 Earthquake in Yaan, China[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(11):2242-2246 doi: 10.1109/LGRS.2015.2463081
[6] Yao Y, Chen P, Wu H, et al. Analysis of Ionospheric Anomalies Before the 2011 M9.0 Japan Earthquake[J]. Chinese Science Bulletin, 2012, 57(5):500-510 doi: 10.1007/s11434-011-4851-y
[7] Liu J Y, Chuo Y J, Shan S J, et al. Pre-earthquake Ionospheric Anomalies Registered by Continuous GPS TEC Measurements[J]. Annales Geophysicae, 2004, 22(5):1585-1593 doi: 10.5194/angeo-22-1585-2004
[8] Ulukavak M, Yalcinkaya M. Precursor Analysis of Ionospheric GPS-TEC Variations Before the 2010 M 7.2 Baja California Earthquake[J]. Geomatics, Natural Hazards and Risk, 2016, 8(2):295-308 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/19475705.2016.1208684
[9] 李磊.基于GNSS的电离层总电子含量的预测与应用研究[D].大连: 大连海事大学, 2015 http://cdmd.cnki.com.cn/Article/CDMD-10151-1015640050.htm Li Lei. Research on Forecasting and Application of the Ionospheric Total Electron Content Based on GNSS[D]. Dalian: Dalian Maritime University, 2015 http://cdmd.cnki.com.cn/Article/CDMD-10151-1015640050.htm
[10] Akhoondzadeh M. Least Square Support Vector Machine for Detection of TEC-Seismo-Ionospheric Anomalies Associated with the Powerful Nepal Earthquake (Mw=7.5) of 25 April 2015[J]. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, 2016, 3(8):3-11 https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/III-8/3/2016/isprs-annals-III-8-3-2016.pdf
[11] 刘静, 万卫星.中国6.0级以上地震临震电离层扰动时空分布特征研究[J].地球物理学报, 2014, 57(7):2181-2189 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HYC201505130000011254 Liu Jing, Wan Weixing. Spatial-Temporal Distribution of the Ionospheric Perturbations Prior to Ms ≥ 6.0 Earthquakes in China Main Land[J]. Chinese Journal of Geophysics, 2014, 57(7):2181-2189 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HYC201505130000011254
[12] 陈鹏, 陈家君. 2012-04-11苏门答腊地震同震电离层异常研究[J].武汉大学学报·信息科学版, 2015, 40(7):882-886 http://ch.whu.edu.cn/CN/abstract/abstract3293.shtml Chen Peng, Chen Jiajun. Coseismic Ionospheric Anomaly of Sumatra Earthquake in April 11th, 2012[J]. Geomatics and Information Science of Wuhan University, 2015, 40(7):882-886 http://ch.whu.edu.cn/CN/abstract/abstract3293.shtml
[13] 马一方, 姜卫平, 席瑞杰.利用全球电离层地图分析芦山地震电离层异常变化[J].武汉大学学报·信息科学版, 2015, 40(9):1274-1278 http://ch.whu.edu.cn/CN/abstract/abstract3333.shtml Ma Yifang, Jiang Weiping, Xi Ruijie. Analysis of Seismo-ionospheric Anomalies in Vertical Total Electron Content of GIM for Lushan Earthquake[J]. Geomatics and Information Science of Wuhan University, 2015, 40(9):1274-1278 http://ch.whu.edu.cn/CN/abstract/abstract3333.shtml
[14] 郑近德, 程军圣, 杨宇.改进的EEMD算法及其应用研究[J].振动与冲击, 2013, 32(21):21-26, 46 doi: 10.3969/j.issn.1000-3835.2013.21.004 Zheng Jinde, Cheng Junsheng, Yang Yu. Modified EEMD Algorithm and Its Applications[J]. Journal of Vibration and Shock, 2013, 32(21):21-26, 46 doi: 10.3969/j.issn.1000-3835.2013.21.004
[15] 李磊, 张淑芳, 胡青, 等. ARMA模型在地震电离层TEC异常探测中的应用[J].大地测量与地球动力学, 2015, 35(1):62-66 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dkxbydz201501014 Li Lei, Zhang Shufang, Hu Qing, et al. Application of ARMA Model in Detecting Ionospheric TEC Anomaly Prior to Earthquake[J]. Journal of Geodesy and Geodynamics, 2015, 35(1):62-66 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dkxbydz201501014
[16] 陈鹏, 姚宜斌, 吴寒.利用时间序列分析预报电离层TEC[J].武汉大学学报·信息科学版, 2011, 36(3):267-270 http://ch.whu.edu.cn/CN/abstract/abstract487.shtml Chen Peng, Yao Yibin, Wu Han. TEC Prediction of Ionosphere Based on Time Series Analysis[J]. Geomatics and Information Science of Wuhan University, 2011, 36(3):267-270 http://ch.whu.edu.cn/CN/abstract/abstract487.shtml
[17] 张梅军, 陈灏, 曹勤, 等.基于SVM信号延拓改进的EEMD方法[J].振动、测试与诊断, 2013, 33(1):93-98, 168 doi: 10.3969/j.issn.1004-6801.2013.01.018 Zhang Meijun, Chen Hao, Cao Qin, et al. The Improved EEMD Method Based on SVM Signal Continuation[J]. Journal of Vibration, Measurement & Diagnosis, 2013, 33(1):93-98, 168 doi: 10.3969/j.issn.1004-6801.2013.01.018
[18] 欧明, 甄卫民, 徐继生, 等.利用数据同化技术实现区域电离层TEC重构[J].武汉大学学报·信息科学版, 2017, 42(8):1075-1081 http://ch.whu.edu.cn/CN/abstract/abstract5799.shtml Ou Ming, Zhen Weimin, Xu Jisheng, et al. Regional Ionospheric TEC Reconstruction by Data Assimilation Technique[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8):1075-1081 http://ch.whu.edu.cn/CN/abstract/abstract5799.shtml
[19] 谢益炳, 伍吉仓, 陈俊平, 等.芦山Ms7.0地震前后电离层电子含量扰动分析[J].地震学报, 2014, 36(1):95-105 doi: 10.3969/j.issn.0253-3782.2014.01.008 Xie Yibing, Wu Jicang, Chen Junping, et al. Perturbation Analysis of the Ionospheric TEC Before and After the Lushan Ms7.0 Earthquake[J]. Acta Seismologica Sinica, 2014, 36(1):95-105 doi: 10.3969/j.issn.0253-3782.2014.01.008
-
期刊类型引用(30)
1. 刘焱雄,陈义兰,杨龙,高珊. 基于测绘学角度探讨海岸线及其测定方法. 海洋科学进展. 2024(03): 425-436 . 百度学术
2. 王继鹏,金云智,辛忠华,吉才宇,郭龙. 基于PSO-BP的北斗卫星导航海底高程拟合技术的研究. 天然气与石油. 2024(06): 153-160 . 百度学术
3. 付五洲,许宝华,陆彬,李涛. 重力场模型在长江口岛礁垂直基准建立中的应用. 现代测绘. 2023(04): 57-60 . 百度学术
4. 王双喜,肖强,孙雪洁. 复杂海域高精度海底地形测量关键问题研究. 海洋技术学报. 2022(01): 7-12 . 百度学术
5. 周颖,王瑞. 远海PPK测量潮位用于深度基准面计算的研究. 港工技术. 2022(02): 23-26 . 百度学术
6. 柯灝,赵建虎,周丰年,吴敬文,暴景阳,赵祥伟,谢朋朋. 联合大地水准面、海面地形和潮波运动数值模拟的长江口陆海垂直基准转换关系. 武汉大学学报(信息科学版). 2022(05): 731-737+746 . 百度学术
7. 单瑞,李浩军,刘慧敏,赵钊,董凌宇,杜凯. GNSS PPP/INS紧组合模式下的远海无验潮水深测量. 海洋地质前沿. 2022(10): 87-93 . 百度学术
8. 张颖,闫玉茹,章家保,李静,裘露露. 潮滩冲淤观测技术发展现状. 海洋科学. 2021(03): 152-162 . 百度学术
9. 王森,刘立龙,黄良珂,周威. 基于潮汐调和分析的全球定位系统-多路径反射测量技术潮位预报. 科学技术与工程. 2021(09): 3481-3486 . 百度学术
10. 魏荣灏,陈佳兵,徐达. 基于PPK无验潮的水下地形测量技术研究. 海洋技术学报. 2021(01): 57-62 . 百度学术
11. 王挺,王萃. GNSS-PPK在远距离潮位观测的应用研究. 江西测绘. 2021(04): 8-11 . 百度学术
12. 王正杰,王峰,吴自银,曹振轶,罗孝文,李守军. 基于GPS PPK技术确定测深点瞬时潮位及分析. 海洋技术学报. 2020(02): 58-63 . 百度学术
13. 王小刚,赵薛强,许军. 珠江口瞬时水位解算方法研究及应用. 水利水电技术. 2020(11): 117-124 . 百度学术
14. 梁冠辉,陶常飞,周兴华,周东旭,王朝阳. 新型远距离验潮系统集成设计与研制. 海洋科学进展. 2019(01): 129-139 . 百度学术
15. 王智明,孙月文. 无验潮模式下的宁波杭州湾水下地形测量. 城市勘测. 2019(02): 157-159 . 百度学术
16. 陈正伟,韩磊. 基于高精度GNSS定位解算及姿态数据获取潮位研究. 海洋技术学报. 2019(05): 55-59 . 百度学术
17. 李梦昊,王胜利,高兴国,陈冠旭,刘焱雄. 基于混合编程的实时精密单点定位方法. 海岸工程. 2018(01): 66-73 . 百度学术
18. 黄辰虎,陆秀平,边刚,黄贤源,管明雷,翟国君,黄谟涛. 中短期验潮站验潮零点不规则漂移精密处理. 武汉大学学报(信息科学版). 2018(11): 1673-1680 . 百度学术
19. Yuanxi YANG,Tianhe XU,Shuqiang XUE. Progresses and Prospects of Marine Geodetic Datum and Marine Navigation in China. Journal of Geodesy and Geoinformation Science. 2018(01): 16-24 . 必应学术
20. 臧建飞,范士杰,易昌华,秦学彬,华亮,麻德明. 实时精密单点定位的远海实时GPS潮汐观测. 测绘科学. 2017(06): 155-160 . 百度学术
21. 臧建飞,范士杰,易昌华,秦学彬,陈冠旭,华亮. 远海实时GPS潮汐的实时精密单点定位观测. 测绘科学. 2017(08): 79-84 . 百度学术
22. 杨元喜,徐天河,薛树强. 我国海洋大地测量基准与海洋导航技术研究进展与展望. 测绘学报. 2017(01): 1-8 . 百度学术
23. 赵建虎,欧阳永忠,王爱学. 海底地形测量技术现状及发展趋势. 测绘学报. 2017(10): 1786-1794 . 百度学术
24. 王朝阳,周兴华,李延刚,梁冠辉,付延光. 远距离GNSS潮位测量精度的影响因素研究. 海洋技术学报. 2017(03): 1-6 . 百度学术
25. 辛保稳,李友龙. GPS PPK技术在海底地形测量中的应用. 科技展望. 2017(18): 161 . 百度学术
26. 杨涛,葛俊洁,李路. GPS测量技术及其在工程测量中的应用. 电子测试. 2016(06): 126+125 . 百度学术
27. 暴景阳,翟国君,许军. 海洋垂直基准及转换的技术途径分析. 武汉大学学报(信息科学版). 2016(01): 52-57 . 百度学术
28. 周东旭,周兴华,梁冠辉,王朝阳,杨磊. GPS浮标天线高的动态标定方法. 测绘科学. 2015(12): 121-124 . 百度学术
29. 赵建虎,王爱学. 精密海洋测量与数据处理技术及其应用进展. 海洋测绘. 2015(06): 1-7 . 百度学术
30. 赵元元,殷行. 土地测量中GPS实时动态技术的应用研究. 价值工程. 2015(20): 161-162 . 百度学术
其他类型引用(6)