-
摘要: 地形匹配定位(terrain aided position,TAP)的似然函数反映了AUV(autonomous underwater vehicle)的位置在空间中的分布概率,由于地形的强非线性、随机性以及测量误差的非高斯分布使得似然函数也表现出非高斯分布的特点。TAP的误差与局部地形特征和地形测量误差密切相关,由于现有的方法未考虑局部地形特征,仅考虑了测量误差的统计置信区间,使得TAP置信区间的估计结果明显偏小。为解决TAP置信区间的估计问题,建立了TAP定位点的跳变模型。设TAP定位点Xp可以向搜索区间内任一点跳变,且向某一点的跳变概率与该点的似然函数值正相关,Xp向某一点跳变的置信度小于α时,认为xα不会向该点跳变,该点设为置信区间的边界点。另外,设地形匹配定位点的置信区间内匹配残差平方和函数为二次曲面,而Xp视为该曲面的待估计参数,则可以通过曲面参数的置信区间估计方法获得1-α置信度下的置信区间。新方法得到的置信区间范围大于现有的估计方法,试验结果表明,测量波束较少时,置信区间估计会出现异常,增加测量波束可以提高潮差和测量误差的估计精度,从而提高置信区间的估计精度,但测量误差非高斯分布条件下的补偿方法仍然需要进一步研究。Abstract: The TAP(terrain aided position) likelihood function reflects the probability of the position of AUV (autonomous underwater vehicle) in space. Due to the strong nonlinearity and randomness of the terrain and the non-Gauss distribution of the measurement error, the likelihood function also shows the characteristics of non-Gauss. The error of TAP is closely related to the local topographic and measurement error. Because the existing method does not consider the local topographic features, the statistical confidence interval of the measurement error is only established, so the estimation results of the TAP are obviously smaller. In this paper, a jump model of the TAP position Xp is established. It can jump to any point in the searching interval, and the probability jumping to any point is positively correlated with the likelihood function of the point. When the confidence of the jump to a certain point is less than α, Xp will not jump to this point and this point is called the boundary point of the confidence interval. Assumed the sum of squares of the matched residuals in the confidence interval of the TAP is quadric surface, Xp is regarded as the parameter of the quadric surface, and the confidence interval of TAP with confidence 1-α can be obtained by the confidence interval estimation method of the surface parameters. The confidence interval obtained by new estimate method is larger than the existing method. The experimental results show that the confidence interval estimation will be abnormal when the measuring beam is less. The increase of the measurement beam can improve the estimation accuracy of the tidal and measurement errors, thus can promote the estimation accuracy of the confidence interval, but the compensation method under the condition of non-Gauss distribution of measurement error is still needed in further work.
-
-
表 1 测量波束增加时测量误差对比
Table 1 Comparison of Measurement Errors when Measuring Beam Increase
测量波束/Ping 估计序列均值 估计序列标准差 与10 Ping结果比较/% 均值 标准差 10 0.181 5 0.089 8 - - 20 0.220 3 0.090 6 ↑21.38 ↑0.89 30 0.233 8 0.087 6 ↑28.80 ↓2.45 表 2 测量波束增加时潮差估计对比
Table 2 Estimation of Tidal when Measured Beam Increase
测量波束/Ping 估计序列均值 估计序列标准差 与10 Ping结果比较/% 均值 标准差 10 2.553 8 0.163 7 - - 20 2.539 0 0.113 5 ↓0.58 ↓30.60 30 2.528 0 0.121 6 ↓1.01 ↓25.72 -
[1] 陈小龙. AUV水下地形匹配辅助导航技术研究[D].哈尔滨工程大学, 2013 http://cdmd.cnki.com.cn/Article/CDMD-10217-1014134060.htm Chen Xiaolong. AUV Underwater Terrain Mat-ching Aided Navigation Technology[D]. Harbin: Harbin Engineering University, 2013 http://cdmd.cnki.com.cn/Article/CDMD-10217-1014134060.htm
[2] Nygren I. Terrain Navigation for Underwater Vehicles[D]. Sweden: Signal Processing Stockholm, 2005 https://www.researchgate.net/publication/265632151_Terrain_Navigation_for_Underwater_Vehicles
[3] Xie Yingrong. Terrain Aided Navigation[D]. Sweden: Stockholm, 2005
[4] Deborah K M. Terrain Relative Navigation for Sensor-Limited Systems with Application to Underwater Vehicle[D]. Palo Alto: Stanford University, 2011 http://web.stanford.edu/group/arl/projects/terrain-relative-navigation
[5] 王汝鹏, 李晔, 马腾, 等.AUV地形匹配导航快速收敛滤波[J].华中科技大学学报(自然科学版), 2018, 46(7):94-97 http://d.old.wanfangdata.com.cn/Periodical/hzlgdxxb201807018 Wang Rupeng, Li Ye, Ma Teng, etal. AUV Topographic Matching Navigation Fast Convergence Filter[J]. Journal of Huazhong University of Scien-ce and Technology (Natural Science Edition), 2018, 46(7):94-97 http://d.old.wanfangdata.com.cn/Periodical/hzlgdxxb201807018
[6] 刘现鹏, 张立华, 王涛, 等.基于航迹线追踪的TERPM定位算法[J].武汉大学学报·信息科学版, 2018, 43(2):219-226 http://ch.whu.edu.cn/CN/abstract/abstract5972.shtml Liu Xianpeng, Zhang Lihua, Wang Tao, et al. TERPM Localization Algorithm Based on Track Tracking[J]. Geomatics and Information Science of Wuhan University, 2018, 43(2):219-226 http://ch.whu.edu.cn/CN/abstract/abstract5972.shtml
[7] 张凯, 赵建虎, 张红梅.一种基于M估计的水下地形抗差匹配算法[J].武汉大学学报·信息科学版, 2015, 40(4):558-562 http://ch.whu.edu.cn/CN/abstract/abstract3244.shtml Zhang Kai, Zhao Jianhu, Zhang Hongmei.An Underwater Terrain Robust Matching Algorithm Based on M Estimation[J]. Geomatics and Information Science of Wuhan University, 2015, 40(4):558-562 http://ch.whu.edu.cn/CN/abstract/abstract3244.shtml
[8] Paull L, Saeedi S, Seto M, et al. AUV Navigation and Localization:A Review[J]. IEEE Journal of Oceanic Engineering, 2014, 39(1):131-149 doi: 10.1109/JOE.2013.2278891
[9] Zeng Z, Lian L, Sammut K, et al. A Survey on Path Planning for Persistent Autonomy of Autonomous Underwater Vehicles[J]. Ocean Engineering, 2015, 110:303-313 doi: 10.1016/j.oceaneng.2015.10.007
[10] Chen L, Wang S, Mcdonald-Maier K, et al. Towards Autonomous Localization and Mapping of AUVs:A Survey[J]. International Journal of Intelligent Unmanned Systems, 2013, 1(2):97-120 doi: 10.1108/20496421311330047
[11] Trees H L V. Detection, Estimation, and Modulation Theory, Part IV, Optimum Array Processing[J]. A Papoulis Probability Random Variables & Stochastic Processes, 2001, 8(10):293-303 http://cn.bing.com/academic/profile?id=ce1ca94f4a41c5ef18f08d8950757273&encoded=0&v=paper_preview&mkt=zh-cn
[12] Box G E P, Jenkins G M, Reinsel G C. Time Series Analysis, Forecasting and Control[M]. 4th ed. New Jersey:John Wiley & Sons, 2008