-
摘要: 初始接缝线网络是影像镶嵌中的重要一环,特别是在遥感影像处理中,它的生成质量对后续接缝线的优化具有重要影响。设计了一种新颖的初始接缝网络线生成方法,它将影像有效区域的重叠拓扑以比特数组的形式进行了封装,并分别赋给了点、线、面这些平面几何要素。一方面,这有助于挖掘影像重叠区之间的空间联系,便于计算接缝线连接的优先关系,使得接缝线的生成不再受制于重叠区域的具体形状,而仅考虑影像的重叠程度,从而大大提高了接缝生成的鲁棒性。另一方面,基于比特运算的高效性也使该方法在接缝线生产效率上体现出优势。与顾及重叠的面Voronoi图的方法进行了对比,该方法在接缝线生成的鲁棒性和效率上都具有一定优势。Abstract: The generation of initial seamline network is one key step in image mosaicking. The quality of generation has a massive impact on subsequent local optimization. In this paper, a novel method for generating initial seamline network is designed. The overlapping information of effective regions of images is encapsulated in the form of a bit array and assigns to the geometric elements such as points, lines and faces. The design contributes to excavate the spatial relation between overlapping areas and to facilitate the calculation of joint priorities of overlapping areas. The main consideration of seam line generation is no longer subject to the specific shape of overlapping areas, but only the degree of overlap. Therefore, it greatly improves the robustness of seam line generation. In addition, the simple bitwise operation reduces the complexity of algorithm and thus improves the computational efficiency. This method is compared with the area voronoi diagram with overlap method. The experiments show that the proposed method has advantages in robustness and efficiency of seam line generation.
-
Keywords:
- seam lines /
- mosaic /
- overlap degree /
- bitwise operation /
- remote sensing
-
-
表 1 有效镶嵌多边形生成过程
Table 1 Process of Generating Effective Mosaic Polygons
影像 边集与相应的关系标志 关联掩码与边子集 有效镶嵌多边形 Ⅰ AB(100), BM(100),
MF(010), FG(010),
GQ(010), QK(001),
KL(001), LI(001),
IR(001), RA(100),
SR(101), SM(110),
SQ(011)100(AB, BM, RA, SR, SM) AB, BM, MS, SR, RA Ⅱ 010(MF, FG, GQ, SM, SQ) MF, FG, GQ, QS, SM Ⅲ 001(QK, KL, LI, IR, SR, SQ) QK, KL, LI, IR, RS, SQ 表 2 AVDO和ODI镶嵌性能比较
Table 2 Comparison of AVDO Method with ODI Method
卫星与影像数量 方法 生成时间/ ms GF1 (49) AVDO 135 ODI 96 GF2 (53) AVDO 171 ODI 125 -
[1] 潘俊, 王密, 李德仁.基于顾及重叠的面Voronoi图的接缝线网络生成方法[J].武汉大学学报·信息科学版, 2009, 34(5):518-521 http://ch.whu.edu.cn/CN/abstract/abstract1256.shtml Pan Jun, Wang Mi, Li Deren. Generation of Seamline Network Using Area Voronoi Diagram with Overlap[J]. Geomatics and Information Science of Wuhan University, 2009, 34(5):518-521 http://ch.whu.edu.cn/CN/abstract/abstract1256.shtml
[2] 潘俊, 王密, 李德仁.接缝线网络的自动生成及优化方法[J].测绘学报, 2010, 39(3):289-294 http://d.old.wanfangdata.com.cn/Periodical/chxb201003012 Pan Jun, Wang Mi, Li Deren. Approach for Automatic Generation and Optimization of Seamline Network[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(3):289-294 http://d.old.wanfangdata.com.cn/Periodical/chxb201003012
[3] Pan J, Wang M, Ma D, et al. Seamline Network Refinement Based on Area Voronoi Diagrams with Overlap[J]. IEEE Transactions on Geoscience & Remote Sensing, 2013, 52(3):1658-1666 http://cn.bing.com/academic/profile?id=55b7c5dfe84f6f3a1fad8db1bdd48049&encoded=0&v=paper_preview&mkt=zh-cn
[4] Pan J, Zhou Q, Wang M. Seamline Determination Based on Segmentation for Urban Image Mosaicking[J]. IEEE Geoscience & Remote Sensing Letters, 2014, 11(8):1335-1339 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0231954345/
[5] Pan J, Wang M, Li J, et al. Region Change Rate-driven Seamline Determination Method[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 105:141-154 doi: 10.1016/j.isprsjprs.2015.04.004
[6] Song M, Ji Z, Huang S, et al. Mosaicking UAV Orthoimages Using Bounded Voronoi Diagrams and Watersheds[J]. International Journal of Remote Sensing, 2017(6):1-20 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/01431161.2017.1350309
[7] Zheng Maoteng, Zhou Shunping, Xiong Xiaodong, et al. A Novel Orthoimage Mosaic Method Using the Weighted A* Algorithm for UAV Imagery[J]. Computers & Geosciences, 2017, 109:123-130 https://www.sciencedirect.com/science/article/pii/S0098300417303436
[8] 张汉松, 陈建裕, 侯淑涛, 等.复杂背景下沿骨架的遥感影像拼接线自动生成[J].红外与激光工程, 2016, 45(S1):207-213 http://d.old.wanfangdata.com.cn/Periodical/hwyjggc2016z1036 Zhang Hansong, Chen Jianyu, Hou Shutao, et al. Automated Seamline Generation Along Skeleton for Remote Sensing Image Mosaicking Considering Complex Background[J]. Infrared and Laser Engineering, 2016, 45(S1):207-213 http://d.old.wanfangdata.com.cn/Periodical/hwyjggc2016z1036
[9] Hsu S, Kumar R. Automated Mosaics via Topology Inference[J]. IEEE Computer Graphics & Applications, 2002, 22(2):44-54 doi: 10.1109-38.988746/
[10] Yang Yi, Gao Yuan, Li Haitao. An Algorithm for Remote Sensing Image Mosaic Based on Valid Area[C]. International Symposium on Image and Data Fusion, Tengchong, China, 2011
[11] Mills S, McLeod P. Global Seamline Networks for Orthomosaic Generation via Local Search[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 75:101-111 doi: 10.1016/j.isprsjprs.2012.11.003
[12] Wan Y, Wang D, Xiao J, et al. Automatic Determination of Seamlines for Aerial Image Mosaicking Based on Vector Roads Alone[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 76:1-10 doi: 10.1016/j.isprsjprs.2012.11.002
[13] Chazelle B. Triangulating a Simple Polygon in Linear Time[J]. Discrete & Computational Geometry, 1991, 6(3):485-524 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC025557190
-
期刊类型引用(4)
1. 王乐洋,邹传义. PEIV模型参数估计理论及其应用研究进展. 武汉大学学报(信息科学版). 2021(09): 1273-1283+1297 . 百度学术
2. 钟光伟,符平贵,杨钢,张俊. 融合LSC和REHSM的地壳形变分析模型. 矿山测量. 2020(05): 27-30 . 百度学术
3. 韩杰,张松林. 附加一次和二次等式约束的Partial-EIV模型及相应算法. 测绘科学技术学报. 2019(01): 17-22+27 . 百度学术
4. 吕志鹏,隋立芬. 基于非线性高斯-赫尔默特模型的结构总体最小二乘法. 武汉大学学报(信息科学版). 2019(12): 1808-1815 . 百度学术
其他类型引用(3)