-
摘要: BM3D(block matching and 3D filtering)是一种有效的高斯噪声去除方法,但对遥感影像中常含有的高斯和脉冲混合噪声去除效果具有局限性;而集成方法是去除混合噪声的有效方式。针对BM3D去噪的缺点,结合其去噪优势,研究发展了一种集成BM3D方法,并改进了一种噪声量估算方法M-Liu法,用于先验噪声估算,作为算法的输入参数。算法验证结果表明,集成BM3D法具有较好的去噪特性,能兼顾影像噪声去除和细节信号的保留,优于同类方法,可为图像去噪提供一种新的方法,对于遥感影像后期应用性研究具有一定的意义。Abstract: BM3D (block matching and 3D filtering) method is an effective Gaussian noise removing method, but it shows limitation when removing Gaussian and impulse mixed noise in remote sensing images. The integrated method is a more effective way to remove mixed noise. In order to make full use of the advantages of BM3D method, an improved integration method (integrated BM3D method) has been developed. And a modified method M-Liu method is raised and used for estimating the priori noise level as an input parameter for the integrated BM3D method. According to algorithm validation, this paper draws the conclusion that the integrated BM3D method, taking the removal of image noise and the retention of detail signals into account, has good denoising performance. The method can be used to provide a new method for image denoising, and it is useful for the later application of remote sensing image.
-
Keywords:
- integrated BM3D method /
- mixture noise /
- denoising /
- remote sensing image
-
-
表 1 Lena和Peppers图像去噪质量评价指标
Table 1 Quality Parameters of Lena and Peppers Images Denoising
方法 Lena图像 Peppers图像 0.01/0.000 5 0.05/0.001 0.01/0.000 5 0.05/0.001 PSNR MSE PSNR MSE PSNR MSE PSNR MSE BM3D 35.66 17.67 32.57 36.02 35.07 20.25 31.61 44.89 WMW 33.16 31.42 31.28 48.41 33.22 30.99 30.83 53.71 K-SVD 34.99 20.61 31.54 45.59 34.53 22.90 31.14 50.02 KSVD-Med 34.93 20.89 31.55 45.55 34.50 23.08 31.14 50.03 BWM 33.00 32.59 30.49 58.03 33.03 32.39 30.13 63.13 MW 32.94 33.03 29.70 69.65 32.96 32.91 29.70 69.61 TV 34.50 23.10 31.44 46.68 34.42 23.50 31.36 47.57 集成BM3D 35.71 17.45 33.09 31.90 35.43 18.64 33.00 32.58 表 2 不同方法的QB去噪质量评价因子表
Table 2 Quality Parameters of QB Image Denoising by Different Methods
方法 0.01/0.000 5 0.02/0.001 0.05/0.001 0.1/0.01 PSNR MSE PSNR MSE PSNR MSE PSNR MSE BM3D 31.97 41.28 30.91 52.77 29.67 70.24 28.84 84.90 WMW 29.66 70.33 29.47 73.38 29.06 80.91 28.52 91.37 KSVD-Med 31.50 46.07 30.41 59.13 29.20 78.16 28.51 91.72 BWM 29.79 68.17 29.57 71.72 28.96 82.68 28.30 96.21 MW 31.01 51.48 30.34 60.18 29.37 75.10 28.75 86.79 TV 30.86 53.31 30.08 63.87 29.04 81.03 28.30 96.13 集成BM3D 32.05 40.58 31.11 50.41 30.07 63.97 29.45 73.77 -
[1] 夏良正, 李久贤.数字图像处理[M].南京:东南大学出版社, 2011 Xia Liangzheng, Li Jiuxian. Digital Image Proces-sing[M]. Nanjing:Southeast University Press, 2011
[2] 刘晓莉, 任丽秋, 李伟, 等.阈值优化的遥感影像小波去噪[J].遥感信息, 2016, 31(2):109-113 doi: 10.3969/j.issn.1000-3177.2016.02.020 Liu Xiaoli, Ren Liqiu, Li Wei, et al. Threshold Optimized Wavelet for Remotely Sensed Image Denoising[J]. Remote Sensing Information, 2016, 31(2):109-113 doi: 10.3969/j.issn.1000-3177.2016.02.020
[3] 李建平.小波分析与信号处理[M].重庆:重庆出版社, 1997 Li Jianping. Wavelet Analysis and Signal Processing[M].Chongqing:Chongqing Press, 1997
[4] Dabov K, Foi A, Katkovnik V, et al. Image Denoising by Sparse 3-D Transform-domain Collaborative Filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8):2080-2095 doi: 10.1109/TIP.2007.901238
[5] 何坤, 琚生根, 林涛, 等. TV数值计算的图像去噪[J].电子科技大学学报, 2013, 42(3):459-463 doi: 10.3969/j.issn.1001-0548.2013.03.027 He Kun, Ju Shenggen, Lin Tao, et al. Image Denoising on TV Numerical Computation[J]. Journal of University Electronic Science and Technology of China, 2013, 42(3):459-463 doi: 10.3969/j.issn.1001-0548.2013.03.027
[6] Laine A F. Wavelet Applications in Signal and Ima-ge Processing[M]. Washington D C:SPIE-the International Society for Optical Engineering, 2000
[7] 夏琴, 邢帅, 马东洋, 等.遥感卫星影像K-SVD稀疏表示去噪[J].遥感学报, 2016, 20(3):441-449 http://d.old.wanfangdata.com.cn/Periodical/ygxb201603009 Xia Qin, Xing Shuai, Ma Dongyang, et al. An Improved K-SVD Based Denoising Method for Remote Sensing Satellite Images[J]. Journal of Remote Sensing, 2016, 20(3):441-449 http://d.old.wanfangdata.com.cn/Periodical/ygxb201603009
[8] Muresan D D, Parks T W. Adaptive Principal Components and Image Denoising[C]. International Conference on Image Processing, IEEE, Spain, 2003 http://www.researchgate.net/publication/4044605_adaptive_principal_components_and_image_denoising?ev=sim_pub
[9] Elad M, Aharon M. Image Denoising Via Sparse and Redundant Representations over Learned Dictionaries[J]. IEEE Transactions on Image Proces-sing, 2006, 15(12):3736-3745 doi: 10.1109/TIP.2006.881969
[10] 袁文成, 杨德兴, 陈超.图像混合噪声的一种组合滤波消除方法[J].微处理机, 2007, 28(4):78-80 doi: 10.3969/j.issn.1002-2279.2007.04.027 Yuan Wencheng, Yang Dexing, Chen Chao. A Synthetic Filtering Method for Restoration of Images Contaminated by Mixed Noise[J]. Microprocessors, 2007, 28(4):78-80 doi: 10.3969/j.issn.1002-2279.2007.04.027
[11] Dong H, Wang F. Image-Denoising Based on Bior Wavelet Transform and Median Filter[C]. Photonics and Optoelectronics (SOPO), Shanghai, China, 2012 http://www.researchgate.net/publication/261498749_Image-Denoising_Based_on_Bior_Wavelet_Transform_and_Median_Filter
[12] 朱建军, 周靖鸿, 周璀, 等.一种新的去除遥感影像混合噪声组合滤波方法[J].武汉大学学报·信息科学版, 2017, 42(3):348-354 http://ch.whu.edu.cn/CN/abstract/abstract5685.shtml Zhu Jianjun, Zhou Jinghong, Zhou Cui, et al. A New Combination Filtering Method to Remove Mixed Noise of Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2017, 42(3):348-354 http://ch.whu.edu.cn/CN/abstract/abstract5685.shtml
[13] Donoho D L. De-noising by Soft-Thresholding[J]. IEEE Transactions on Information Theory, 1995, 41(3):613-627 doi: 10.1109/18.382009
[14] Donoho D L, Johnstone I M. Adapting to Unknown Smoothness via Wavelet Shrinkage[J]. Journal of the American Statistical Association, 1995, 90(432):1200-1224 doi: 10.1080/01621459.1995.10476626
[15] Lim J S. Two-dimensional Signal and Image Processing[M].Upper Saddle River:Prentice Hall, 1990
[16] Aja-Fernández S, Alberola-López C. Automatic Noise Estimation in Images Using Local Statistics. Additive and Multiplicative Cases[J]. Image and Vision Computing, 2009, 27(6):756-770 doi: 10.1016/j.imavis.2008.08.002
[17] Pyatykh S, Hesser J, Zheng L. Image Noise Level Estimation by Principal Component Analysis[J]. IEEE Transactions on Image Processing, 2013, 22(2):687 doi: 10.1109/TIP.2012.2221728
[18] Liu X, Tanaka M, Okutomi M. Noise Level Estimation Using Weak Textured Patches of a Single Noisy Image[C]. Image Processing (ICIP), 19th IEEE International Conference on, IEEE, Orlando, USA, 2012 http://www.researchgate.net/publication/261387053_Noise_level_estimation_using_weak_textured_patches_of_a_single_noisy_image
[19] Schneider C, Gürenci J. Mathematical Problems in Image Processing:Partial Differential Equations and the Calculus of Variations[M]. New York:Springer, 2009
[20] Ichigaya A, Nishida Y, Nakasu E. Nonreference Method for Estimating PSNR of MPEG-2 Coded Video by Using DCT Coefficients and Picture Energy[J]. IEEE Transactions on Circuits & Systems for Video Technology, 2008, 18(6):817-826 http://www.researchgate.net/publication/3309371_Nonreference_Method_for_Estimating_PSNR_of_MPEG-2_Coded_Video_by_Using_DCT_Coefficients_and_Picture_Energy
[21] Salman A G, Kanigoro B, Rojali, et al. Application Hiding Messages in JPEG Images with the Method of Bit-Plane Complexity Segmentation on Android-Based Mobile Devices[C]. Elsevier Ltd, Jakarta D C, 2012