Abstract:
The influence of the number and distribution of ground tracking stations on the precision orbit determination of navigation satellites is analyzed, and a stochastic optimization method for selecting the ground tracking stations for GNSS satellite precise orbit determination is proposed. The proposed method takes the information such as site location and quality into account, by assigning a certain probability to the global station. An algorithm is designed to optimally select a set of IGS ground tracking stations to achieve GPS satellite precise orbit determination of high precision. The results show that, based on the proposed method, by using 30 stations, the optimally-selected GPS precision orbit accuracy can reach 2.15 cm, while by using 60 stations the accuracy is better than 1.26 cm, the number of stations reaches 90, the precision of orbit determination can be increased to 1 cm.