室内行人移动行为识别及轨迹追踪

熊汉江, 郭胜, 郑先伟, 周妍

熊汉江, 郭胜, 郑先伟, 周妍. 室内行人移动行为识别及轨迹追踪[J]. 武汉大学学报 ( 信息科学版), 2018, 43(11): 1696-1703. DOI: 10.13203/j.whugis20170066
引用本文: 熊汉江, 郭胜, 郑先伟, 周妍. 室内行人移动行为识别及轨迹追踪[J]. 武汉大学学报 ( 信息科学版), 2018, 43(11): 1696-1703. DOI: 10.13203/j.whugis20170066
XIONG Hanjiang, GUO Sheng, ZHENG Xianwei, ZHOU Yan. Indoor Pedestrian Mobile Activity Recognition and Trajectory Tracking[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1696-1703. DOI: 10.13203/j.whugis20170066
Citation: XIONG Hanjiang, GUO Sheng, ZHENG Xianwei, ZHOU Yan. Indoor Pedestrian Mobile Activity Recognition and Trajectory Tracking[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1696-1703. DOI: 10.13203/j.whugis20170066

室内行人移动行为识别及轨迹追踪

基金项目: 

国家重点研发计划 2016YFB0502203

测绘地理信息公益研究项目 201512009

测绘遥感信息工程国家重点实验室专项科研经费 

详细信息
    作者简介:

    熊汉江, 博士, 教授, 主要从事三维GIS和室内GIS的相关研究。xionghanjiang@163.com

    通讯作者:

    郑先伟, 博士。zhengxw@whu.edu.cn

  • 中图分类号: P208

Indoor Pedestrian Mobile Activity Recognition and Trajectory Tracking

Funds: 

The National Key Research and Development Program of China 2016YFB0502203

Mapping Geographic Information Industry Research Projects of Public Interest Industry 201512009

the Special Research Funding of State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing 

More Information
  • 摘要: 作为室内位置服务的基础,室内定位技术近年来得到了广泛的关注。针对现有室内定位技术存在成本高、精度有限以及效率不足等问题,提出了一种融合人类活动识别、行人航迹推算(pedestrian dead recko-ning,PDR)以及地标匹配修正等技术的室内行人位置推算方法。该方法使用基于智能手机的PDR技术来估算用户的位置信息,而人类活动识别技术则用来感知用户室内移动行为中的特定地标,利用这些地标信息来辅助修正PDR轨迹中产生的累积误差。此外,为了解决用户初始位置未知的问题,引入隐式马尔科夫模型进行推断,并提出了一种顾及室内环境特征的维特比算法来确定用户轨迹。实验结果显示,所提方法在提高室内行人移动行为识别和定位精度的同时,有效实现了用户室内轨迹的追踪。
    Abstract: As the basis of indoor location services, indoor localization technology has received more and more attention in recent years. Aiming at the problems of high cost, limited precision and insufficient efficiency in existing indoor positioning technologies, pedestrian dead reckoning (PDR), human acti-vity recognition (HAR) and landmarks are combined to obtain more accurate pedestrian indoor localization. PDR is used to estimate the user's location, and the cumulative error of PDR is reduced by landmarks, which are sensed by HAR. In addition, to solve the initial position determination problem, a hidden Markov model that considers the characteristics of the indoor environment is applied to match the continuous trajectory. The experimental results show that the proposed method has a good performance in activity recognition and positioning accuracy, and can track the user's trajectory efficiently.
  • 图  1   步数检测

    Figure  1.   Step Detection

    图  2   基于地标的轨迹纠正

    Figure  2.   Landmark-Based Trajectory Correction

    图  3   面朝南开门时磁力计变化

    Figure  3.   Magnetometer Changes when a Door is Opened Facing South

    图  4   1条轨迹的行为识别结果

    Figure  4.   Activity Recognition Result of a Trajectory

    图  5   真实轨迹108、PDR原始轨迹和修正轨迹

    Figure  5.   True Trajectory 108, PDR Original Trajectory and Corrected Trajectory

    图  6   轨迹201的PDR估计轨迹与修正轨迹

    Figure  6.   PDR Trajectory and Corrected Trajectory of Trajectory 201

    图  7   PDR轨迹匹配结果

    Figure  7.   PDR Trajectory Matching Result

    图  8   轨迹108的PDR位置误差以及通过地标修正后的位置误差

    Figure  8.   Errors from PDR Location and Location Errors Corrected by Landmarks of Trajectory 108

    图  9   地标匹配结果

    Figure  9.   Landmark Matching Result

    图  10   累积误差分布图

    Figure  10.   Cumulative Error Distribution

    表  1   分类精度/%

    Table  1   Classification Accuracy/%

    分类方法 基于滑动窗口 基于单步事件窗口
    DT 98.62 98.69
    SVM 96.55 97.73
    KNN 98.83 98.95
    下载: 导出CSV

    表  2   kNN分类方法的混淆矩阵

    Table  2   Confusion Matrix of kNN

    行为类别 预测类别 分类精度/%
    站立 行走 上下楼 开门
    站立 284 (294) 0 0 10 (0) 96.60 (100)
    行走 0 1981 3 0 99.85
    上下楼 0 4 787 0 99.49
    开门 3 (0) 0 0 56 (59) 94.92 (100)
    下载: 导出CSV

    表  3   Zee、UnLoc与本文方法的综合比较

    Table  3   Comprehensive Comparison of Zee, UnLoc and the Proposed Method

    方法 需求 传感器 用户参与 精度
    Zee[30] 室内平面图 加速计、陀螺仪、磁力计、WiFi 无需用户参与 1~2 m
    UnLoc[16] 1个位置点 加速计、陀螺仪、磁力计、WiFi 用户部分参与 1~2 m
    本文方法 室内平面图 加速计、陀螺仪、磁力计、气压计 用户部分参与 小于1 m
    下载: 导出CSV
  • [1]

    Deng Z, Wang G, Hu Y, et al. Carrying Position Independent User Heading Estimation for Indoor Pedestrian Navigation with Smartphones[J]. Sensors, 2016, 16(5):677-1-677-22 doi: 10.3390/s16050677

    [2]

    Gezici S, Tian Z, Giannakis G B, et al. Localization via Ultra-Wideband Radios:A Look at Positioning Aspects for Future Sensor Networks[J]. IEEE Signal Processing Magazine, 2005, 22(4):70-84 https://ieeexplore.ieee.org/abstract/document/1458289

    [3]

    Thrun S. Probabilistic Robotics[J]. Communications of the ACM, 2002, 45(3):52-57 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027086507/

    [4]

    Zhu W, Cao J, Xu Y, et al. Fault-Tolerant RFID Reader Localization Based on Passive RFID Tags[J]. IEEE Transactions on Parallel and Distributed Systems, 2014, 25(8):2065-2076 doi: 10.1109/TPDS.2013.217

    [5]

    Deng Z, Xu Y, Ma L. Indoor Positioning via Nonlinear Discriminative Feature Extraction in Wireless Local Area Network[J]. Computer Communications, 2012, 35(6):738-747 doi: 10.1016/j.comcom.2011.12.011

    [6]

    Incel O D, Kose M, Ersoy C. A Review and Taxo-nomy of Activity Recognition on Mobile Phones[J]. Bio Nano Science, 2013, 3(2):145-171 http://dl.acm.org/citation.cfm?doid=1964897.1964918

    [7]

    Klasnja P, Pratt W. Healthcare in the Pocket:Mapping the Space of Mobile-Phone Health Interventions[J]. Journal of Biomedical Informatics, 2012, 45(1):184-198 doi: 10.1016/j.jbi.2011.08.017

    [8]

    Yang Z, Wu C, Zhou Z, et al. Mobility Increases Localizability:A Survey on Wireless Indoor Localization Using Inertial Sensors[J]. ACM Computing Surveys (CSUR), 2015, 47(3):1-34 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0235400951/

    [9] 石高涛, 王伯远, 吴斌.基于WiFi与移动智能终端的室内定位方法综述[J].计算机工程, 2015(9):39-44 doi: 10.3969/j.issn.1000-3428.2015.09.007

    Shi Gaotao, Wang Boyuan, Wu Bin. Overview of Indoor Localization Method Based on WiFi and Mobile Smart Terminal[J]. Computer Engineering, 2015(9):39-44 doi: 10.3969/j.issn.1000-3428.2015.09.007

    [10] 陈国良, 张言哲, 汪云甲, 等. WiFi-PDR室内组合定位的无迹卡尔曼滤波算法[J].测绘学报, 2015, 44(12):1314-1321 http://d.old.wanfangdata.com.cn/Periodical/chxb201512003

    Chen Guoliang, Zhang Yanzhe, Wang Yunjia, et al. Unscented Kalman Filter Algorithm for WiFi-PDR Integrated Indoor Positioning[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(12):1314-1321 http://d.old.wanfangdata.com.cn/Periodical/chxb201512003

    [11]

    Leppäkoski H, Collin J, Takala J. Pedestrian Navigation Based on Inertial Sensors, Indoor Map, and WLAN Signals[J]. Journal of Signal Processing Systems, 2013, 71(3):287-296 doi: 10.1007/s11265-012-0711-5

    [12]

    Li F, Zhao C, Ding G, et al. A Reliable and Accurate Indoor Localization Method Using Phone Inertial Sensors[C]. The 2012 ACM Conference on Ubiquitous Computing, Pittsburgh, USA, 2012

    [13]

    Xiao Z, Wen H, Markham A, et al. Lightweight Map Matching for Indoor Localization Using Conditional Random Fields[C]. The 13th International Symposium on Information Processing in Sensor Networks, Berlin, Germany, 2014

    [14] 宋镖, 程磊, 周明达, 等.基于惯导辅助地磁的手机室内定位系统设计[J].传感技术学报, 2015, 28(8):1249-1254 doi: 10.3969/j.issn.1004-1699.2015.08.025

    Song Biao, Cheng Lei, Zhou Mingda, et al.The Design of Cellphone Indoor Positioning System Based Magnetic Assisted Inertial Navigation Technology[J]. Chinese Journal of Sensors and Actuators, 2015, 28(8):1249-1254 doi: 10.3969/j.issn.1004-1699.2015.08.025

    [15] 马明, 宋千, 李杨寰, 等.基于地磁辅助的室内行人定位航向校正方法[J].电子与信息学报, 2017, 39(3):647-653 http://d.old.wanfangdata.com.cn/Periodical/dzkxxk201703020

    Ma Ming, Song Qian, Li Yanghuan, et al. Magnetic-Aided Heading Error Calibration Approach for Indoor Pedestrian Positioning[J].Journal of Electronics & Information Technology, 2017, 39(3):647-653 http://d.old.wanfangdata.com.cn/Periodical/dzkxxk201703020

    [16]

    Wang H, Sen S, Elgohary A, et al. No Need to War-Drive: Unsupervised Indoor Localization[C]. The 10th International Conference on Mobile Systems, Applications and Services, Ambleside, The United Kingdom, 2012

    [17] 周宝定, 李清泉, 毛庆洲, 等.用户行为感知辅助的室内行人定位[J].武汉大学学报·信息科学版, 2014, 39(6):719-723 http://ch.whu.edu.cn/CN/abstract/abstract3006.shtml

    Zhou Baoding, Li Qingquan, Mao Qingzhou, et al. User Activity Awareness Assisted Indoor Pedestrian Localization[J]. Geomatics and Information Science of Wuhan University, 2014, 39(6):719-723 http://ch.whu.edu.cn/CN/abstract/abstract3006.shtml

    [18]

    Chen Z, Zou H, Jiang H, et al. Fusion of WiFi, Smartphone Sensors and Landmarks Using the Kalman Filter for Indoor Localization[J]. Sensors, 2015, 15(1):715-732 doi: 10.3390/s150100715

    [19]

    Constandache I, Choudhury R R, Rhee I. Towards Mobile Phone Localization Without War-Driving[C]. The 29th Conference on Computer Communications, San Diego, USA, 2010

    [20]

    Zhou B, Li Q, Mao Q, et al. ALIMC:Activity Landmark-Based Indoor Mapping via Crowdsour-cing[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(5):2774-2785 doi: 10.1109/TITS.2015.2423326

    [21]

    Constandache I, Bao X, Azizyan M, et al. Did You See Bob?: Human Localization Using Mobile Phones[C]. The 16th Annual International Confe-rence on Mobile Computing and Networking, Chicago, USA, 2010

    [22]

    Jun J, Gu Y, Cheng L, et al. Social-Loc: Improving Indoor Localization with Social Sensing[C]. The 11th ACM Conference on Embedded Networked Sensor Systems, Roma, Italy, 2013

    [23]

    Azizyan M, Constandache I, Choudhury R R. Surround-Sense: Mobile Phone Localization via Ambience Fingerprinting[C]. The 15th Annual International Conference on Mobile Computing and Networking, Beijing, China, 2009

    [24]

    Sun Z, Mao X, Tian W, et al. Activity Classification and Dead Reckoning for Pedestrian Navigation with Wearable Sensors[J]. Measurement Science and Technology, 2009, 20(1):015203-1-015203-10 doi: 10.1088/0957-0233/20/1/015203

    [25]

    Kappi J, Syrjarinne J, Saarinen J. MEMS-IMU Based Pedestrian Navigator for Handheld Devices[C]. The 14th International Technical Meeting of the Satellite Division of the Institute of Navigation, Salt Lake City, USA, 2001

    [26]

    Gusenbauer D, Isert C, Krösche J. Self-contained Indoor Positioning on Off-the-Shelf Mobile Devices[C]. The 2010 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Zurich, Switzerland, 2010

    [27]

    Kang W, Nam S, Han Y, et al. Improved Heading Estimation for Smartphone-Based Indoor Positio-ning Systems[C]. The 23rd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), Sydney, Australia, 2012

    [28]

    Kang W, Han Y. SmartPDR:Smartphone-Based Pedestrian Dead Reckoning for Indoor Localization[J]. IEEE Sensors Journal, 2015, 15(5):2906-2916 doi: 10.1109/JSEN.2014.2382568

    [29]

    Shoaib M, Bosch S, Incel O, et al. A Survey of Online Activity Recognition Using Mobile Phones[J]. Sensors, 2015, 15(1):2059-2085 doi: 10.3390/s150102059

    [30]

    Rai A, Chintalapudi K K, Padmanabhan V N, et al. Zee: Zero-Effort Crowdsourcing for Indoor Localization[C]. The 18th Annual International Conference on Mobile Computing and Networking, Istanbul, Turkey, 2012

图(10)  /  表(3)
计量
  • 文章访问数:  7747
  • HTML全文浏览量:  663
  • PDF下载量:  642
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-06
  • 发布日期:  2018-11-04

目录

    /

    返回文章
    返回