语义尺度影响的相离区域合并与拓扑关系计算

王占刚, 吴自兴, 王想红

王占刚, 吴自兴, 王想红. 语义尺度影响的相离区域合并与拓扑关系计算[J]. 武汉大学学报 ( 信息科学版), 2018, 43(11): 1712-1718. DOI: 10.13203/j.whugis20170009
引用本文: 王占刚, 吴自兴, 王想红. 语义尺度影响的相离区域合并与拓扑关系计算[J]. 武汉大学学报 ( 信息科学版), 2018, 43(11): 1712-1718. DOI: 10.13203/j.whugis20170009
WANG Zhangang, WU Zixing, WANG Xianghong. Disjoint Region Merging and Topological Relation Computing Induced by Semantic Scale[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1712-1718. DOI: 10.13203/j.whugis20170009
Citation: WANG Zhangang, WU Zixing, WANG Xianghong. Disjoint Region Merging and Topological Relation Computing Induced by Semantic Scale[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1712-1718. DOI: 10.13203/j.whugis20170009

语义尺度影响的相离区域合并与拓扑关系计算

基金项目: 

国家自然科学基金 41672326

国家自然科学基金 41202238

中央高校基本科研业务费专项资金 

详细信息
    作者简介:

    王占刚, 博士, 副教授, 主要从事数学地质、三维地质建模和地质信息系统等研究。millwzg@163.com

  • 中图分类号: P208

Disjoint Region Merging and Topological Relation Computing Induced by Semantic Scale

Funds: 

The National Natural Science Foundation of China 41672326

The National Natural Science Foundation of China 41202238

the Fundamental Research Funds for the Central Universities 

More Information
    Author Bio:

    WANG Zhangang, PhD, associate professor, specializes in the mathematical geology, 3D geological modeling and geological information system.E-mail:millwzg@163.com

  • 摘要: 拓扑关系随着语义尺度的变化需要重新推理或者计算。当粗略语义尺度下的区域对象由详细尺度下的有限个区域合并而成时, 区域对象间的拓扑关系可采用已有的组合推理方法得到, 然而这些方法只适用于简单对象并存在多解性。针对此问题, 提出了基于9交模型的拓扑关系多尺度计算方法, 分别针对相离区域合并和相邻区域合并定义了9交矩阵操作算子, 可利用详细语义尺度的拓扑关系直接计算出合并区域间的9交矩阵。利用9交矩阵操作算子得到的计算结果值域为复杂区域对象间所有可能的拓扑关系, 且不存在多解性, 通过消除歧义性还可扩展9交矩阵操作算子, 适用于多个相离简单区域组合的复杂区域。
    Abstract: Topological relations vary with the changes of semantic scales.Complex regions with diffe-rent semantic scales are merged by a finite number of simple regions and their topological relations have to be updated.The current methods make use of inferred combinatorial tables based on basic topological relations between simple regions.However, these methods are generally only applicable to simple objects and have multiple solutions.This paper presents a computation approach of modeling scale dependences of topological relations based on the 9-intersection (9I) model.In terms of the disconnected region merging and adjacent region merging, 9I-based matrix operators are defined for computing directly topological relations of the coarse semantic scale from the relations of the detailed scale.The computation results of the 9I-based matrix operators have no multiple solutions, and the computation domain can cover for all possible topological relations between complex regions.The 9I-based matrix operators can be extended to process composite regions composed of disconnected simple regions by eliminating ambiguities.
  • 图  1   区域对象定义

    Figure  1.   Definition of Region Objects

    图  2   具有公共边界的区域合并与拓扑关系计算

    Figure  2.   Regions Merging with Common Boundaries and Topological Relations Computing

    图  3   添加辅助区域消除计算错误(当B1B2为边相接关系)

    Figure  3.   Extra Regions Added to Solve Ambiguities When B1 Meets B2 with Common Boundaries

    图  4   添加带洞辅助区域处理具有公共边界的B1B2区域合并

    Figure  4.   Adding Extra Regions with Holes to Merge B1 and B2 with Common Boundaries

    图  5   华北4省气象信息系统空气污染条件(2016年10月5日6时)

    Figure  5.   Meteorological Conditions of Air Pollution in Four Provinces of North China (At 6:00 on October 5, 2016)

    图  6   河北省区域构成与附加区域

    Figure  6.   Administrative Regions of Hebei Province and the Added Extra Regions

  • [1]

    Goodchild M F.Metrics of Scale in Remote Sensing and GIS[J].International Journal of Applied Earth Observation and Geoinformation, 2001, 3(2):114-120 doi: 10.1016/S0303-2434(01)85002-9

    [2] 李志林.地理空间数据处理的尺度理论[J].地理信息世界, 2005, 3(2):1-5 doi: 10.3969/j.issn.1672-1586.2005.02.001

    Li Zhilin.A Theoretical Discussion on the Scale Issue in Geospatial Data Handling[J].Geomatics World, 2005, 3(2):1-5 doi: 10.3969/j.issn.1672-1586.2005.02.001

    [3] 李霖, 李德仁.GIS中二维空间目标的非原子性和尺度性[J].测绘学报, 1994, 23(4):315-321 doi: 10.3321/j.issn:1001-1595.1994.04.012

    Li Lin, Li Deren.Non-atomic Feature and Scale Effect of Two Dimensional Spatial Objects in GIS[J].Acta Geodaetica et Cartographica Sinica, 1994, 23(4):315-321 doi: 10.3321/j.issn:1001-1595.1994.04.012

    [4] 刘凯, 毋河海, 胡洁, 等.地理信息尺度的三重概念及其变换[J].武汉大学学报·信息科学版, 2008, 33(11):1178-1181 http://ch.whu.edu.cn/CN/abstract/abstract1746.shtml

    Liu Kai, Wu Hehai, Hu Jie, et al.Three-Tiered Concepts of Scale of Geographical Information and Its Transformation[J].Geomatics and Information Science of Wuhan University, 2008, 33(11):1178-1181 http://ch.whu.edu.cn/CN/abstract/abstract1746.shtml

    [5] 李霖, 应申.空间尺度基础性问题研究[J].武汉大学学报·信息科学版, 2005, 30(3):119-123 http://ch.whu.edu.cn/CN/abstract/abstract2133.shtml

    Li Lin, Ying Shen.Fundamental Problem on Spatial Scale[J].Geomatics and Information Science of Wuhan University, 2005, 30(3):119-123 http://ch.whu.edu.cn/CN/abstract/abstract2133.shtml

    [6] 吴凡, 李霖.空间数据多尺度表达模型及其可视化[M].北京:科学出版社, 2005

    Wu Fan, Li Lin.Spatial Data Multi-scale Expression Model and Its Visualization[M].Beijing:Science Press, 2005

    [7] 杜世宏.多尺度空间关系理论与实践[M].北京:科学出版社, 2014

    Du Shihong.Theory and Practice of Multi-scale Spatial Relations[M].Beijing:Science Press, 2014

    [8]

    Tryfona N, Egenhofer M J.Consistency Among Parts and Aggregates:A Computational Model[J].Transactions in GIS, 1996, 1(3):189-206 doi: 10.1111/tgis.1996.1.issue-3

    [9]

    Nguyen V H, Parent C, Spaccapietra S.Complex Regions in Topological Queries[C].The International Conference on Spatial Information Theory: COSIT97, Pennsylvania, USA, 1997

    [10]

    Du S H, Wang Q, Guo L.Modeling the Scale Dependences of Topological Relations Between Lines and Regions Induced by Reduction of Attributes[J].International Journal of Geographical Information Science, 2010, 24(11):1649-1686 doi: 10.1080/13658811003591672

    [11]

    Du S, Guo L, Wang Q.A Scale-Explicit Model for Checking Directional Consistency in Multi-resolution Spatial Data[J].International Journal of Geographical Information Science, 2010, 24(3):465-485 doi: 10.1080/13658810802629360

    [12]

    Du S H, Feng C C, Wang Q.Multi-scale Qualitative Location:A Direction-Based Model[J].Computers, Environment and Urban Systems, 2013, 41(4):151-166 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0231547114/

    [13]

    Du S H, Feng C C, Guo L.Integrative Representation and Inference of Qualitative Locations About Points, Lines, and Polygons[J].International Journal of Geographical Information Science, 2015, 29(6):980-1006 doi: 10.1080/13658816.2015.1004333

    [14]

    Zhou X G, Chen J, Zhan F B, et al.A Euler Number-Based Topological Computation Model for Land Parcel Database Updating[J].International Journal of Geographical Information Science, 2013, 27(10):1983-2005 doi: 10.1080/13658816.2013.780607

    [15]

    Egenhofer M J.Deriving the Composition of Binary Topological Relations[J].Journal of Visual Languages and Computing, 1994, 5(2):133-149 doi: 10.1006/jvlc.1994.1007

    [16]

    Egenhofer M J, Franzosa R D.Point-set Topological Spatial Relations[J].International Journal of Geographical Information Systems, 1991, 5(2):161-174 doi: 10.1080/02693799108927841

    [17]

    Egenhofer M J, Herring J R.Categorizing Binary Topological Relations Between Regions, Lines, and Points in Geographic Databases[R].Department of Surveying Engineering, University of Maine, Orono, 1990

    [18]

    Herring J R.OpenGIS Implementation Specification for Geographic Information-Simple Feature Access-Part 2: SQL Option[EB/OL].http://www.opengeospatial.org/standards/sfs/,2010

    [19]

    Schneider M, Behr T.Topological Relationships Between Complex Spatial Objects[J].ACM Transactions on Database Systems, 2006, 31(1):39-81 doi: 10.1145/1132863

    [20]

    Li S J.A Complete Classification of Topological Relations Using the 9-Intersection Method[J].International Journal of Geographical Information Science, 2006, 20(6):589-610 doi: 10.1080/13658810600661383

    [21]

    Clementini E, Felice P D.A Spatial Model for Complex Objects with a Broad Boundary Supporting Queries on Uncertain Data[J].Data & Knowledge Engineering, 2001, 37(3):285-305 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0210250879

    [22]

    Worboys M F, Bofakos P.A Canonical Model for a Class of Areal Spatial Objects[C].The 3rd International Symposium on Advances in Spatial Databa-ses, Singapore, 1993

    [23] 王占刚, 杜群乐, 王想红.复杂区域对象拓扑关系分解与计算[J].测绘学报, 2017, 46(8):1047-1057 http://d.old.wanfangdata.com.cn/Periodical/chxb201708014

    Wang Zhangang, Du Qunle, Wang Xianghong.Dividing and Computing Topological Relations Between Complex Regions[J].Acta Geodaetica et Cartographica Sinica, 2017, 46(8):1047-1057 http://d.old.wanfangdata.com.cn/Periodical/chxb201708014

图(6)
计量
  • 文章访问数:  4143
  • HTML全文浏览量:  175
  • PDF下载量:  200
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-24
  • 发布日期:  2018-11-04

目录

    /

    返回文章
    返回