-
摘要: 叶片光谱是估算植被生化参数的重要依据。然而,遥感影像获取的光谱为像元及冠层光谱,因此,在进行植被生化参数的遥感定量估算时,需将冠层光谱转化到叶片尺度。根据几何光学模型原理,推导出植被冠层光谱和叶片光谱的尺度转换函数,将冠层光谱转换到叶片尺度。首先,采用叶片光谱模拟模型PROSPECT模拟出叶片水平的光谱;其次,在几何光学模型4-scale模型中,通过改变叶片光谱和叶面积指数(leaf area index,LAI),模拟出不同叶片特征下的冠层光谱。最后,通过LAI建立两个查找表,一个是传感器观测到树冠光照面和背景光照面概率的查找表,另一个是多次散射因子M的查找表,从而实现冠层光谱和叶片光谱的转化。结果表明,利用4-scale模型能实现冠层光谱与叶片光谱的尺度转换,此方法有很好的适用性。
-
关键词:
- 高光谱遥感 /
- PROSPECT模型 /
- 4-scale模型 /
- 叶面积指数LAI
Abstract: Leaf spectrum is very important to estimate vegetation biochemical parameters. However, the spectrum obtained from remote sensing is pixel and canopy spectrum, therefore, it is necessary to transform the spectrum from canopy level to leaf level when estimating leaf biochemical parameters by remote sensing data. The scaling conversion function during downscales from pixel spectra, canopy spectra to leaf spectra was derived according to principles of geometrical optics model in this paper. First, PROSPECT model was used to simulate leaf spectra. Then, with the other parameters unchanged, the canopy spectra was simulated under different leaf area index(LAI) and leaf spectra by 4-scale model, and the relationship between leaf reflectance and sunlit canopy reflectance was found. Finally, two lookuping tables were established based on LAI to achieve transformation from canopy spectra to leaf spectra. One is used to describe the relations between the probability of observed sunlit canopy and observed illuminating background. The other is for scattering factor calculation. The result indicates that leaf spectra can be well converted from canopy spectra using 4-scale model. The proposed method is very effective and useful.-
Keywords:
- hyperspectral remote sensing /
- PROSPECT model /
- 4-scale model /
- leaf area index(LAI)
-
-
表 1 4-scale模型输入参数
Table 1 Input Parameters of the 4-scale Model
模型输入参数 针叶 阔叶 样地范围/m2 10 000 10 000 树冠密度/个 1 100 1 100 树冠形状 圆锥与圆柱结合体 椭球体 树冠高度/m 5 7 树干高度/m 6 4 树冠半径/m 1 1.5 集聚指数 0.65 0.75 叶面积指数
0.5~10
(步长为0.1)0.5~10
(步长为0.1)太阳天顶角/(°) 40 40 观测天顶角/(°) 0 0 相对方位角/(°) 180 180 表 2 PROSPECT模型输入参数的范围及步长
Table 2 Range and Step of Input Parameters in the PROSPECT Model
参数 范围 步长 结构参数 (1, 3) 0.2 叶绿素含量/mg·cm-2 (0, 100) 5 水含量/g·cm-2 0.025 — 干物质含量/g·cm-2 (0.002, 0.02) 0.002 -
[1] Renzullo L J, Blanchield A L, Guillermin R, et al. Comparison of PROSPECT and HPLC Estimates of Leaf Chlorophyll Contents in a Grapevine Stress Study[J]. Internationnl Journal of Remote Sen-sing, 2006, 27(4):817-823 doi: 10.1080/01431160500239164
[2] Zarco-Tejada P J, Miller J R, Noland T L, et al. Scaling-up and Model Inversion Methods with Narrowband Optical Indices for Chlorophyll Content Estimation in Closed Forest Canopies with Hyperspectral Data[J]. IEEE Transactions on Geosciences and Remote Sensing, 2001, 39(7):1491-1507 doi: 10.1109/36.934080
[3] Verhoef W. Light Scattering by Leaf Layers with Application to Canopy Reflectance Modeling:The SAIL Model[J]. Remote Sensing of Environment, 1984, 16(2):125-141 doi: 10.1016/0034-4257(84)90057-9
[4] 于颖, 范文义, 杨曦光.三种植被冠层二向反射分布函数模型的比较[J].植物生态学报, 2012, 36(1):55-62 http://d.old.wanfangdata.com.cn/Periodical/zwstxb201201007 Yu Ying, Fan Wenyi, Yang Xiguang. Comparisons of Three Models for Vegetation Canopy Bi-directional Reflectance Distribution Function[J]. Chinese Journal of Plant Ecology, 2012, 36(1):55-62 http://d.old.wanfangdata.com.cn/Periodical/zwstxb201201007
[5] Huemmrich K. The GeoSAIL Model:A Simple Addition to the SAIL Model to Describe Discontinuous Canopy Reflectance[J]. Remote Sensing of Environment, 2001, 75(3):423-431 doi: 10.1016/S0034-4257(00)00184-X
[6] Zhang Y Q, Chen J M, Miller J R, et al. Leaf Chlorophyll Content Retrieval from Airborne Hyperspectral Remote Sensing Imagery[J]. Remote Sen-sing of Environment, 2008, 112(7):3234-3247 doi: 10.1016/j.rse.2008.04.005
[7] 杨曦光, 于颖, 黄海军, 等.森林冠层氮含量遥感估算[J].红外与毫米波学报, 2012, 31(6):536-543 http://d.old.wanfangdata.com.cn/Periodical/hwyhmb201206011 Yang Xiguang, Yu Ying, Huang Haijun, et al. Estimation of Forest Canopy Nitrogen Content Based on Remote Sensing[J]. Journal of Infrared and Millimeter Waves, 2012, 31(6):536-543 http://d.old.wanfangdata.com.cn/Periodical/hwyhmb201206011
[8] 杨曦光, 范文义, 于颖.基于PROSPECT+SAIL模型的森林冠层叶绿素含量反演[J].光谱学与光谱分析, 2010, 30(11):3022-3026 doi: 10.3964/j.issn.1000-0593(2010)11-3022-05 Yang Xiguang, Fan Wenyi, Yu Ying. Estimation of Forest Canopy Chlorophyll Content Based on PROSPECT and SAIL Models[J]. Spectroscopy and Spectral Analysis, 2010, 30(11):3022-3026 doi: 10.3964/j.issn.1000-0593(2010)11-3022-05
[9] 钮立明, 蒙继华, 吴炳方, 等. HJ-1A星HSI数据2级产品处理流程研究[J].国土资源遥感, 2011, 88(1):77-82 http://d.old.wanfangdata.com.cn/Periodical/gtzyyg201101015 Niu Liming, Meng Jihua, Wu Bingfang, et al. Research on Standard Preprocessing Flow for HJ-1A HSI Level 2 Data Product[J]. Remote Sensing for Land & Resources, 2011, 88(1):77-82 http://d.old.wanfangdata.com.cn/Periodical/gtzyyg201101015
[10] Jacquemoud S. PROSPECT:A Model of Leaf Optical Properties[J]. Remote Sensing of Environment, 1990, 34(2):75-91 doi: 10.1016/0034-4257(90)90100-Z
[11] Jacquemoud S, Ustin S L, Verdebout J, et al. Estimating Leaf Biochemistry Using the PROSPECT Leaf Optical Properties Model[J]. Remote Sensing of Environment, 1996, 56(3):194-202 doi: 10.1016/0034-4257(95)00238-3
[12] 牛铮, 王长耀.碳循环遥感基础与应用[M].北京:科学出版社, 2008 Niu Zheng, Wang Changyao. Remote Sensing and Applications for Carbon Cycle[M]. Beijing:Sciences Press, 2008
[13] Chen J M, Leblanc S G. A Four-scale Bidirectional Reflectance Model Based on Canopy Architecture[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(5):1316-1337 doi: 10.1109/36.628798
[14] Zhang Y Q, Chen J M, Miller J R, et al. Leaf Chlorophyll Content Retrieval from Airborne Hyperspectral Remote Sensing Imagery[J]. Remote Sen-sing of Environment, 2008, 112(7):3234-3247 doi: 10.1016/j.rse.2008.04.005
[15] Yang X G, Yu Y, Fan W Y. Chlorophyll Content Retrieval from Hyperspectral Remote Sensing Ima-gery[J]. Environmental Monitoring and Assessment, 2015, 187(7):456 doi: 10.1007/s10661-015-4682-4
-
期刊类型引用(10)
1. 曾广泉,马韬,张孟希,戴妍,陈凯文,丁继辉,俞双恩,王中文. 基于无人机多光谱影像的不同施氮量水稻LAI反演方法研究. 江苏农业科学. 2024(20): 41-48 . 百度学术
2. 高钰琪,许桂玲,冯跃华,王晓珂,任红军,由晓璇,韩志丽,李家乐. 基于冠层高光谱植被指数的水稻产量预测模型研究. 中国稻米. 2023(05): 38-44 . 百度学术
3. 彭晓伟,张爱军,王楠,赵丽,杨晓楠. 高光谱技术在土壤及适种作物的研究进展. 遥感信息. 2022(01): 32-39 . 百度学术
4. 王晓珂,刘婷婷,许桂玲,冯跃华,彭金凤,李杰,罗强鑫,韩志丽,卢苇,PHONENASAY Somsana. 基于冠层高光谱遥感的杂交水稻植被指数氮素营养诊断模型. 中国稻米. 2021(03): 21-29 . 百度学术
5. 王浩淼,宋苗语,李翔,扈朝阳,鲁任翔,王翔,马会勤. 无人机高光谱遥感监测葡萄长势与缺株定位. 园艺学报. 2021(08): 1626-1634 . 百度学术
6. 刘雅婷,龚龑,段博,方圣辉,彭漪. 多时相NDVI与丰度综合分析的油菜无人机遥感长势监测. 武汉大学学报(信息科学版). 2020(02): 265-272 . 百度学术
7. 陈晓凯,李粉玲,王玉娜,史博太,侯玉昊,常庆瑞. 无人机高光谱遥感估算冬小麦叶面积指数. 农业工程学报. 2020(22): 40-49 . 百度学术
8. 落莉莉,常庆瑞,武旭梅,杨景,李粉玲,王琦. 夏玉米叶片光合色素含量高光谱估算. 干旱地区农业研究. 2019(04): 178-183 . 百度学术
9. 张良培,刘蓉,杜博. 使用量子优化算法进行高光谱遥感影像处理综述. 武汉大学学报(信息科学版). 2018(12): 1811-1818 . 百度学术
10. 李亚妮,鲁蕾,刘勇. 基于PROSAIL模型的水稻田缨帽三角-叶面积指数模型及其应用. 应用生态学报. 2017(12): 3976-3984 . 百度学术
其他类型引用(17)