An Outlier Detection Method of GNSS/SINS Integrated Navigation Based on Accelerometer Bias Stability
-
摘要: 在地面车载组合导航中,全球导航卫星系统(global navigation satellite system,GNSS)的观测值容易受地面复杂环境的干扰,导致其定位结果出现异常,严重影响GNSS/捷联惯性导航系统(strap-down inertial navigation system,SINS)组合的滤波解算。从惯导系统误差特性的角度,研究了一种基于加表零偏稳定性的组合导航异常探测新方法。该方法从加表零偏解算的异常来发现GNSS位置、速度等观测值中的粗差,并采取剔除和降权的抗差方法抵御粗差影响。通过一组车载数据的分析表明,观测粗差对加表零偏解算的影响十分显著,以此为判别条件能够准确地发现观测粗差。采用该方法后,位置误差、速度误差和姿态误差的均方根分别减小了70.8%、87.9%和77.7%,显著提高了组合导航的解算精度和鲁棒性,为组合导航数据的抗差处理提供了一种新思路。Abstract: In the ground vehicle integrated navigation, GNSS observations are often interfered by complex ground environment and thus, its positioning result is more prone to contain outliers which can seriously affect GNSS/SINS integrated filter solution. This paper, from the perspective of IMU system error feature, studies an outlier detection method of GNSS/SINS integrated navigation based on accelerometer bias stability. According to the outlier of accelerometer bias result, the method detects gross errors in GNSS position, velocity, etc; and then applies the robust strategies of rejection and weight reduction to resist the influence of gross errors. The method is analyzed by a set of vehicle measured data. The results show that the observation outliers can greatly affect the accelerometer bias result and thus taking the accelerometer bias stability as a condition, the outliers can be exactly detected. In every direction of ENU, the RMS of position and the RMS of velocity are improved by 70.8% and 87.9% respectively; the RMS of attitude is improved by 77.7%. The method greatly improves the accuracy and robustness of integrated navigation results and provides a new strategy for robust processing of integrated navigation data.
-
-
表 1 不同型号IMU的主要性能指标
Table 1 Main Technical Specifications of Different Types of IMU
性能指标 Ellipse-N SPAN-CPT SPAN-FSAS POS830 陀螺零偏/(°·h-1) 60 20 0.75 0.10 陀螺零偏稳定性 0.2°/s 1.0°/h 0.1°/h 0.01°/h 加表零偏/mg 100 50 1 0.5 加表零偏稳定性/mg 5.0 0.75 0.01 0.005 表 2 3种算法RMS对比
Table 2 RMS Comparison of the Three Algorithms
算法 位置误差/m 速度误差/(m·s-1) 姿态误差/(°) 东向 北向 天向 东向 北向 天向 航向角 俯仰角 横滚角 EKF 7.972 3.270 5.863 0.360 0.115 0.272 0.193 0.029 0.059 IGG3 1.463 1.825 0.998 0.061 0.018 0.034 0.036 0.009 0.014 Acc-Bias 1.247 1.836 0.937 0.038 0.021 0.020 0.027 0.008 0.015 -
[1] Nassar S, Niu X, El-Sheimy N. Land-Vehicle INS/GPS Accurate Positioning During GPS Signal Blockage Periods[J]. Journal of Surveying Enginee-ring, 2007, 133(3):134-143 doi: 10.1061/(ASCE)0733-9453(2007)133:3(134)
[2] 苗岳旺, 周巍, 田亮, 等.基于新息χ2检测的扩展抗差卡尔曼滤波及其应用[J].武汉大学学报·信息科学版, 2016, 41(2):269-273 http://ch.whu.edu.cn/CN/abstract/abstract3466.shtml Miao Yuewang, Zhou Wei, Tian Liang, et al. Extended Robust Kalman Filter Based on Innovation Chi-square Test Algorithm and Its Application[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2):269-273 http://ch.whu.edu.cn/CN/abstract/abstract3466.shtml
[3] 苗岳旺. SINS/GPS组合导航数据处理方法研究[D]. 郑州: 信息工程大学, 2013 Miao Yuewang. Research on Data Processing Methods of SINS/GPS Integrated Navigation[D]. Zhengzhou: Information Engineering University, 2013
[4] 吴富梅, 聂建亮, 何正斌.利用预测残差和选权滤波构造的分类因子在GPS/INS组合导航中的应用[J].武汉大学学报·信息科学版, 2012, 37(3):261-264 http://ch.whu.edu.cn/CN/abstract/abstract132.shtml Wu Fumei, Nie Jianliang, He Zhengbin. Classified Adaptive Filtering to GPS/INS Integrated Navigation Based on Predicted Residuals and Selecting Weight Filtering[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3):261-264 http://ch.whu.edu.cn/CN/abstract/abstract132.shtml
[5] 何正斌, 吴富梅, 聂建亮.先验协方差阵误差对动态Kalman滤波解的影响[J].武汉大学学报·信息科学版, 2011, 36(1):34-38 http://ch.whu.edu.cn/CN/abstract/abstract442.shtml He Zhengbin, Wu Fumei, Nie Jianliang. Error Influences of Prior Covariance Matrices on Dynamic Kalman Filtering[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1):34-38 http://ch.whu.edu.cn/CN/abstract/abstract442.shtml
[6] 朱锋. PPP/SINS组合导航关键技术与算法研究实现[D]. 武汉: 武汉大学, 2015 Zhu Feng. The Key Technology and Algorithm of PPP/SINS Integration[D]. Wuhan: Wuhan University, 2015
[7] Groves P D. Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems[M]. London:Artech House, 2008
[8] Shin E H. Estimation Techniques for Low-Cost Inertial Navigation[D]. Calgary: University of Calgary, 2003
[9] Noureldin A, Karamat T B, Georgy J. Fundamentals of Inertial Navigation, Satellite-Based Positioning and Their Integration[M]. Heidelberg, Berlin:Springer, 2013
[10] 杨元喜.自适应动态导航定位[M].北京:测绘出版社, 2006 Yang Yuanxi. Adaptive Navigation and Kinematic Positioning[M]. Beijing:Surveying and Mapping Press, 2006
[11] 李浩军, 唐诗华, 黄杰.抗差估计中几种选权迭代法常数选取的探讨[J].测绘科学, 2006, 31(6):70-71 http://www.cnki.com.cn/Article/CJFDTOTAL-CHKD200606022.htm Li Haojun, Tang Shihua, Huang Jie. Discussion for the Selection of Constant in Selecting Weight Iteration Method in Robust Estimation[J]. Science of Surveying and Mapping, 2006, 31(6):70-71 http://www.cnki.com.cn/Article/CJFDTOTAL-CHKD200606022.htm
[12] 陈西强, 黄张裕.抗差估计的选权迭代法分析与比较[J].测绘工程, 2010, 19(4):8-11 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chgc201004003 Chen Xiqiang, Huang Zhangyu. Analysis and Com-parison of the Selecting Weight Iteration Method in Resistance Robust Estimation[J]. Engineering of Surveying and Mapping, 2010, 19(4):8-11 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chgc201004003