利用多等级相关性反馈进行空间场景匹配

Spatial Scene Matching Based on Multilevel Relevance Feedback

  • 摘要: 现有的空间场景匹配方法利用低级描述子(如局部几何形状描述子、方向、拓扑)或其组成的简单二元空间关系建立模型来试图满足用户的描述需求,缺乏对用户级主观概念的反馈机制。将用户反馈机制应用到空间场景匹配过程中,以研究机器在学习用户需求后对空间场景匹配的影响。在运算过程中,用户对匹配结果进行相关度评估并反馈给模型,模型根据反馈结果动态地更新检索参数权重以模拟用户的主观感知,从而使得调整后的匹配运算更加贴近用户需求。通过进行用户调查及分析特征向量权重的收敛情况验证了此方法的有效性和效率,实验结果表明,根据用户反馈进行空间场景匹配具有很高的用户主观性强度,用户只需进行2~3次的反馈就能得到较为满意的结果,空间场景的匹配结果更符合人的空间认知。

     

    Abstract: Existing spatial scene matching methods try to use low level features such as local geome-trical shape descriptors, binary spatial relations of cardinal directions or topology and so on to meet with the high level description demands from users, and lack the feedback mechanism of user subjective concepts. This paper applies the feedback relevance mechanism to spatial scene matching, analyzes the effects after studying users' needs, and then evaluates the relevance of matching results to the desired spatial scene. According to the feedback, the retrieval model updates the weights of descriptors to simulate user's perception, as a result, the retrieval fits the users' requirements much better. The experiment verifies the efficiency and feasibility by users survey and weights convergence. Experimental result shows that spatial scene matching based on multilevel relevance feedback has a high user subjectivity and accords with human's cognizance. In addition, users could obtain satisfactory result by two or three iterations.

     

/

返回文章
返回