基于可变形状参数Gamma分布的模糊聚类多视SAR图像分割

Fuzzy Clustering Algorithm for Multi-view SAR Image Segmentation Based on Gamma Distribution with Variable Shape Parameter

  • 摘要: 针对传统模糊聚类分割算法无法克服合成孔径雷达(synthetic aperture radar, SAR)图像中固有的斑点噪声问题, 提出了一种利用可变形状参数Gamma分布和邻域相关性的模糊聚类分割算法。可变形状参数Gamma分布用于建模多视SAR强度图像的斑点噪声, 并以其负对数作为特征场中像素与聚类间强度的相似性测度模型; 通过马尔可夫随机场(Markov random field, MRF)建立标号场中邻域像素的类属相关性模型; 在模糊聚类框架下, 以上述模型为基础构建模糊目标函数; 在目标函数最小化准则下, 求解最优结果。实验表明, 可变形状参数Gamma分布能够更加准确地拟合同质区域内像素强度的统计直方图。为有效求解包涵在Gamma函数内的形状参数, 采用牛顿迭代算法估计其数值解。对合成和真实多视SAR图像分别进行分割实验, 定性、定量分析的结果验证了本文算法的有效性。

     

    Abstract: Considering the problem that the traditional fuzzy clustering algorithm can not overcome the inherent speckle noise of SAR image, a fuzzy clustering segmentation algorithm using variable shape parameter Gamma distribution and neighborhood correlation is proposed.The variable shape parameter Gamma distribution is used to model the speckle noise of the multi-view SAR intensity image, and its negative logarithm is used as the similarity measure between the pixel and the intensity of the cluster in the feature field.Markov random field (MRF) is used to establish a generic correlation model of neighborhood pixels in label fields.In the framework of fuzzy clustering, the fuzzy objective function is constructed based on the above models, and the optimal result is obtained under the objective function minimization criterion.Experiments show that the variable shape parameter Gamma distribution can more accurately fit the histogram of pixel intensity in the homogeneous region.In order to effectively solve the shape parameter contained in the Gamma function, Newton iteration algorithm is used to estimate its numerical solution.Qualitative and quantitative analysis results show that the algorithm is effective in segmenting synthetic and real multi-view SAR images.

     

/

返回文章
返回