顾及邻域结构的线状要素Morphing方法

李精忠, 方文江

李精忠, 方文江. 顾及邻域结构的线状要素Morphing方法[J]. 武汉大学学报 ( 信息科学版), 2018, 43(8): 1138-1143. DOI: 10.13203/j.whugis20160142
引用本文: 李精忠, 方文江. 顾及邻域结构的线状要素Morphing方法[J]. 武汉大学学报 ( 信息科学版), 2018, 43(8): 1138-1143. DOI: 10.13203/j.whugis20160142
LI Jingzhong, FANG Wenjiang. Morphing Polylines by Preserving Local Neighborhood Structures[J]. Geomatics and Information Science of Wuhan University, 2018, 43(8): 1138-1143. DOI: 10.13203/j.whugis20160142
Citation: LI Jingzhong, FANG Wenjiang. Morphing Polylines by Preserving Local Neighborhood Structures[J]. Geomatics and Information Science of Wuhan University, 2018, 43(8): 1138-1143. DOI: 10.13203/j.whugis20160142

顾及邻域结构的线状要素Morphing方法

基金项目: 

国家重点研发计划 2017YFB0503601

国家重点研发计划 2017YFB0503502

国家自然科学基金 41671448

详细信息
    作者简介:

    李精忠, 博士, 副教授, 研究方向为DEM分析、地图综合、空间数据多尺度表达。00009232@whu.edu.cn

    通讯作者:

    方文江, 硕士生。244550975@qq.com

  • 中图分类号: P208;P283

Morphing Polylines by Preserving Local Neighborhood Structures

Funds: 

The National Key Research and Development Program of China 2017YFB0503601

The National Key Research and Development Program of China 2017YFB0503502

the National Natural Science Foundation of China 41671448

More Information
    Author Bio:

    LI Jingzhong, PhD, associate professor, specializes in the DEM analysis, map generalization and multiple representations of spatial data. E-mail: 00009232@whu.edu.cn

    Corresponding author:

    FANG Wenjiang, postgraduate. E-mail: 244550975@qq.com

  • 摘要: 地图综合过程中,综合前后图形轮廓上两点间的绝对距离可能会发生很大改变,但是点的邻域结构和上下文信息相对保持稳定。基于此,首先提出一种结合形状上下文和松弛标记法的形状匹配方法,通过全局形状描述子形状上下文来描述点集的不变特征;然后将点集间形状上下文的统计检验匹配代价转化为松弛标记法的初始匹配概率,接着通过迭代支持度函数更新匹配概率,直到建立最优匹配;最后根据点集的匹配关系,得到相应的匹配线段,通过线性插值实现要素的连续尺度变换。实验结果表明,该方法不仅能够很好地顾及要素的上下文信息,而且也能顾及到邻域结构特征,提高Morphing变换的精度。
    Abstract: This paper presents a Morphing method of polylines based on shape matching by preserving local neighborhood structures. Although the absolute distance between two points may change significantly during the map generalization, the global context and the neighborhood structure of points are generally well preserved and more stable. We first introduce a shape matching method by combining the shape context and relaxation labeling which takes advantages of the global context and local neighborhood structure. Using shape context descriptors, we get the matching costs between points which can be used to initialize the matching probability matrix during relaxation labeling. Afterwards, weiterate the support functions to update the matching probability matrix until we get the optimal match-ing results. The two polylines are divided into two groups of sub-segments by the matching results. Finally, by using the linear interpolation method, we make Morphing for every pair of the corresponding sub-segments. Extensive experiments have shown that our method can well preserve both the global context and local neighborhood structures, and can improve the accuracy of Morphing transformation.
  • 图  1   形状上下文计算方法[10]

    Figure  1.   Computation of Shape Context[10]

    图  2   实验数据和匹配结果

    Figure  2.   Experimental Data and Matching Results

    图  3   效果叠加图和局部放大图

    Figure  3.   Overlaps of the Results and Close-Up of Region IV

  • [1]

    Sester M, Brenner C. Continuous Generalization for Visualization on Small Mobile Devices[M]//Deve-lopments in Spatial Data Handling. Berlin, Heidelberg:Springer, 2005

    [2] 李华, 朱光喜, 朱耀庭, 等.物体渐变技术现状与发展[J].中国图象图形学报(A辑), 2002, 7(8):745-751 https://www.cnki.com.cn/qikan-ZXDB201129014.html

    Li Hua, Zhu Guangxi, Zhu Yaoting, et al. A Survey of Object Metamorphosis[J]. Journal of Image and Graphics, 2002, 7(8):745-751 https://www.cnki.com.cn/qikan-ZXDB201129014.html

    [3]

    van Kreveld M. Smooth Generalization for Conti-nuous Zooming[C]. The 20th International Cartographic Conference, Beijing, 2001

    [4]

    Cecconi A. Integration of Cartographic Generalization and Multi-scale Databases for Enhanced Web Mapping[D]. Zurich: University of Zurich, 2003

    [5]

    Nöllenburg M, Merrick D, Wolff A, et al. Morphing Polylines:A Step Towards Continuous Gene-ralization[J]. Computers, Environment and Urban Systems, 2008, 32(4):248-260 doi: 10.1016/j.compenvurbsys.2008.06.004

    [6] 李精忠, 吴晨琛, 杨泽龙, 等.一种利用模拟退火思想的线状要素Morphing方法[J].武汉大学学报·信息科学版, 2014, 39(12):1446-1451 http://ch.whu.edu.cn/CN/abstract/abstract3139.shtml

    Li Jingzhong, Wu Chenchen, Yang Zelong, et al. A Morphing Method for Linear Features Based on Simulated Annealing[J]. Geomatics and Information Science of Wuhan University, 2014, 39(12):1446-1451 http://ch.whu.edu.cn/CN/abstract/abstract3139.shtml

    [7] 彭东亮, 邓敏, 刘慧敏.更充分利用独立弯曲结构的线状要素Morphing变换方法[J].测绘学报, 2014, 43(6):637-652 http://www.cqvip.com/QK/90069X/201406/67728866504849524854484952.html

    Peng Dongliang, Deng Min, Liu Huimin. Morphing Transformation of Linear Features by Using Independent Bend Structures More Sufficiently[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(6):637-652 http://www.cqvip.com/QK/90069X/201406/67728866504849524854484952.html

    [8] 邓敏, 彭东亮, 徐震, 等.一种基于弯曲结构的线状要素Morphing方法[J].中南大学学报(自然科学版), 2012, 43(7):2674-2682 http://www.docin.com/p-513356982.html

    Deng Min, Peng Dongliang, Xu Zhen, et al. A Morphing Method Based on Bend Structures for Linear Features[J]. Journal of Central South University(Science and Technology), 2012, 43(7):2674-2682 http://www.docin.com/p-513356982.html

    [9] 谢天, 李精忠.面状居民地Morphing变换的转向角函数法[J].测绘学报, 2015, 44(7):797-804 doi: 10.11947/j.AGCS.2015.20140333

    Xie Tian, Li Jingzhong. Steering Angle Function Algorithm of Morphing of Residential Area[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(7):797-804 doi: 10.11947/j.AGCS.2015.20140333

    [10]

    Belongie S, Malik J, Puzicha J. Shape Context: A New Descriptor for Shape Matching and Object Re-cognition[C]. The 13th International Conference on Neural Information Processing Systems, Denver, Colorado, 2000

    [11]

    Zheng Y, Doermann D. Robust Point Matching for Nonrigid Shapes by Preserving Local Neighborhood Structures[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2006, 28(4):643-649 doi: 10.1109/TPAMI.2006.81

    [12]

    Hummel R A, Zucker S W.On the Foundations of Relaxation Labeling Processes[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1983(3):267-287 http://www.sciencedirect.com/science/article/pii/B9780080515816500581

    [13]

    Yang Bisheng, Zhang Yunfei, Luan Xuechen. A Probabilistic Relaxation Approach for Matching Road Networks[J].International Journal of Geographical Information Science, 2013, 27(2):319-338 doi: 10.1080/13658816.2012.683486

    [14]

    Song Wenbo, Keller J M, Haithcoat T L, et al. Relaxation-Based Point Feature Matching for Vector Map Conflation[J].Transactions in GIS, 2011, 15(1):43-60 doi: 10.1111/tgis.2011.15.issue-1

    [15] 钟成, 李卉, 黄先锋, 等.利用6元组松弛法自动配准LiDAR数据与航空影像[J].武汉大学学报·信息科学版, 2009, 34(12):1426-1430 http://ch.whu.edu.cn/CN/abstract/abstract1463.shtml

    Zhong Cheng, Li Hui, Huang Xianfeng, et al. Automatic Registration of LiDAR Data and Aerial Image Based on a 6-Tuples Relaxation[J]. Geomatics and Information Science of Wuhan University, 2009, 34(12):1426-1430 http://ch.whu.edu.cn/CN/abstract/abstract1463.shtml

    [16]

    Scott C, Nowak R. Robust Contour Matching via the Order-Preserving Assignment Problem[J]. Image Processing, IEEE Transactions on, 2006, 15(7):1831-1838 doi: 10.1109/TIP.2006.877038

    [17] 罗磊, 殷建平, 张国敏, 等, 基于加权相邻关系的形状轮廓点匹配[J].计算机工程与科学, 2008, 30(11):34-37 doi: 10.3969/j.issn.1007-130X.2008.11.011

    Luo Lei, Yin Jianping, Zhang Guomin, et al. Point Matching for Shape Based on Weighted Neighborhood Relationships[J]. Computer Engineering & Science, 2008, 30(11):34-37 doi: 10.3969/j.issn.1007-130X.2008.11.011

  • 期刊类型引用(4)

    1. 刘晓云,郭春喜,靳鑫洋,蒋涛. 2020年珠峰高程测量与确定流程解析. 大地测量与地球动力学. 2024(02): 111-115+127 . 百度学术
    2. 张建华,张庆涛,张涛,郑文科,陈小英. 顾及水准起算重力异常差异的珠峰地区垂直形变分析. 测绘科学. 2023(06): 1-8 . 百度学术
    3. 郭春喜,靳鑫洋,蒋涛,王斌,刘晓云. 2020与2005珠峰测量与高程确定异同. 测绘科学. 2023(07): 10-15 . 百度学术
    4. 党亚民,蒋涛,杨元喜,孙和平,姜卫平,朱建军,薛树强,张小红,蔚保国,罗志才,李星星,肖云,章传银,张宝成,李子申,冯伟,任夏,王虎. 中国大地测量研究进展(2019—2023). 测绘学报. 2023(09): 1419-1436 . 百度学术

    其他类型引用(0)

图(3)
计量
  • 文章访问数:  1809
  • HTML全文浏览量:  212
  • PDF下载量:  305
  • 被引次数: 4
出版历程
  • 收稿日期:  2016-08-02
  • 发布日期:  2018-08-04

目录

    /

    返回文章
    返回