The Estimation of BeiDou Satellite-induced Code Bias and Its Impact on the Precise Positioning
-
摘要: 现阶段北斗卫星导航系统(BeiDou navigation satellite system,BDS)的同步地球轨道(geostationary orbits,GEO)卫星、中倾斜地球同步轨道(inclined geo-synchronous orbits,IGSO)卫星和中圆地球轨道(medium earth orbit,MEO)卫星均存在伪距偏差,该伪距偏差的存在对精密定位的研究及其应用产生了较大的影响。根据北斗IGSO和MEO卫星的伪距偏差与高度角和频率相关的误差特性,本文分析了测站数目及分布,以及观测时长对建模的影响,选择18个测站2015年全年的数据作为MEO卫星的建模数据,其中可以连续观测到全弧段IGSO卫星的4个测站用于IGSO卫星的建模,采用加权分段线性拟合联合抗差估计的方法建立了北斗卫星伪距偏差改正模型。模型改正后,北斗IGSO和MEO卫星的伪距偏差得到明显的削弱,相比于传统的伪距偏差改正模型,精密单点定位(precise point positioning,PPP)的定位精度和收敛时间均得到提升。
-
关键词:
- 北斗卫星导航定位系统 /
- 伪距偏差 /
- 模型估计 /
- MP组合 /
- PPP
Abstract: Thecode-phase divergences, which are absent for GPS, GLONASS, and Galileo, are commonlyfound in BDS geostationary (GEO), Inclined GeoSynchronous Orbit (IGSO) and Medium Earth Orbit (MEO) satellites. Several precise applications that use code observations are severely affected by these code biases; therefore, it is necessary to correct biases in BDS code observations. Since the BeiDou satellite-induced code bias is confirmed to be orbit type-, frequency-, and elevation-dependent, an improved code bias correction model for IGSO and MEO satellites based on a large amount of the data was developed. To obtain the best fitting results, we analyzed the effect of the number and distribution of stations and observation time on model estimation, and also considered the different influence of multipath at different elevations. A robust estimation method controlled the observation quality. A dataset from 18 stations during one year period in 2015 was employed to estimate the correction model for MEO satellites and four stations for IGSO satellite. To validate the improved correction model, the effect of the code bias on precise point positioning (PPP) before and after correction is analyzed and compared. Results show that systematic variations were eliminated more clearly after applying the improved correction model as compared to the traditional model. After correction, the positioning accuracy of PPP solution was improved and the convergence time decreasedshowing a better performance than results using thetraditional model as proposed by Wanninger and Beer. -
-
表 1 改进模型对应的节点伪距改正值
Table 1 Piecewise Linear Correction Values for BeiDou Code Measurements for Improved Model
高度角/(°) 改正值/m IGSO卫星 MEO卫星 B1 B2 B3 B1 B2 B3 5 -0.238 -0.246 -0.406 -0.375 -0.400 -0.134 10 -0.540 -0.421 -0.211 -0.405 -0.238 -0.174 15 -0.430 -0.296 -0.169 -0.314 -0.213 -0.112 20 -0.274 -0.272 -0.157 -0.220 -0.228 -0.131 25 -0.255 -0.260 -0.138 -0.180 -0.131 -0.047 30 -0.265 -0.227 -0.253 -0.144 -0.113 -0.052 35 -0.168 -0.154 -0.089 -0.179 -0.114 -0.081 40 -0.137 -0.115 -0.118 -0.091 -0.065 -0.030 45 -0.064 -0.068 -0.073 0.005 0.006 0.044 50 -0.019 -0.041 -0.010 0.081 0.068 0.048 55 0.025 0.037 -0.008 0.222 0.187 0.083 60 0.130 0.079 0.049 0.322 0.224 0.133 65 0.175 0.116 0.084 0.463 0.326 0.201 70 0.238 0.167 0.127 0.631 0.440 0.287 75 0.234 0.202 0.152 0.716 0.485 0.288 80 0.272 0.250 0.207 0.918 0.583 0.367 85 0.302 0.259 0.155 0.955 0.628 0.393 表 2 3种PPP处理策略的定位结果精度
Table 2 Positioning Errors for BeiDou PPP with Three Different Strategies
定位精度/m 无改正 传统模型 改进模型 E方向 0.189 0.172 0.156 N方向 0.157 0.143 0.127 U方向 0.429 0.414 0.295 -
[1] Hauschild A, Montenbruck O, Sleewaegen J M, et al. Characterization of Compass M-1 Signals[J].GPS Solutions, 2012, 16(1):117-126 doi: 10.1007/s10291-011-0210-3
[2] Hauschild A, Montenbruck O, Thoelert S, et al. A Multi-technique Approach for Characterizing the SVN49 Signal Anomaly, Part 1: Receiver Tracking and IQ Constellation[J].GPS Solutions, 2012, 16(1):19-28 doi: 10.1007/s10291-011-0203-2
[3] Montenbruck O, Hauschild A, Steigenberger P, et al. Three's the Challenge: A Close Look at GPS SVN62 Triple-frequency Signal Combinations Find Carrierphase Variations on the New L5[J].GPS World, 2010(8):8-19 doi: 10.1007/s10291-011-0232-x
[4] Montenbruck O, Hauschild A, Steigenberger P, et al. A Compass for Asia: First Experience with the BeiDou-2 Regional Navigation System[C]. Poster at IGS Workshop in Olsztyn, Poland, 2012
[5] Montenbruck O, Rizos C, Weber R, et al. Getting A Grip on Multi-GNSS: The International GNSS Service MGEX Campaign[J]. GPS World, 2013, 24(2013-07):44-49 http://elib.dlr.de/87388/
[6] Zhang X H, He Xiyang. BDS Triple-frequency Carrier-phase linear Combination Models and Theircharacteristics[J]. Science China Earth Sciences, 2015, 58(06):896-905 doi: 10.1007/s11430-014-5027-9
[7] Li X, Ge M, Zhang H, et al. The GFZ Real-time GNSS Precise Positioning Service System and Its Adaption for Compass[J].Advances in Space Research, 2013, 51(6):1 008-1 018 doi: 10.1016/j.asr.2012.06.025
[8] Li X, Ge M, Zhang H, et al. A Method for Improving Uncalibrated Phase Delay Estimation and Ambiguity-fixing in Real-time Precise Point Positioning[J].Journal of Geodesy, 2013, 87(5):405-416 doi: 10.1007/s00190-013-0611-x
[9] Li X X, Ge M R, Dai X L, et al. Real-time Multi-GNSS Precise Positioning System: GPS, GLONASS, BeiDou, and Galileo[J]. German Navigation. 2015, 89:607-635 doi: 10.1007/s00190-015-0802-8
[10] Wanninger L, Beer S. BeiDou Satellite-induced Code Pseudorange Variations: Diagnosis and Therapy[J].GPS Solutions, 2015, 19(4):639-648 doi: 10.1007/s10291-014-0423-3
[11] Bakker P F D, Tiberius C C J M, Marel H V D, et al. Short and Zero Baseline Analysis of GPS L1 C/A, L5Q, GIOVE E1B, and E5aQ signals[J].GPS Solutions, 2012, 16(1):53-64 doi: 10.1007/s10291-011-0202-3
[12] 张小红, 郭斐, 李盼, 等. GNSS精密单点定位中的实时质量控制[J].武汉大学学报·信息科学版, 2012, 37(8):940-944 http://ch.whu.edu.cn/CN/abstract/abstract281.shtml Zhang Xiaohong, Guo Fei, Li Pan, et al. Real-time Quality Control Procedure for GNSS Precise Point Positioning. [J]. Geomatics and Information Science of Wuhan University, 2012, 37(8):940-944 http://ch.whu.edu.cn/CN/abstract/abstract281.shtml
[13] 张小红, 丁乐乐.北斗二代观测值质量分析及随机模型精化[J].武汉大学学报·信息科学版, 2013, 38(7):832-835 http://ch.whu.edu.cn/CN/abstract/abstract2696.shtml Zhang Xiaohong, Ding Lele. Quality Analysis of the Second Generation Compass Observables and Stochastic Model Refining[J]. Geomatics and Information Science of Wuhan University, 2013, 38(7):832-835 http://ch.whu.edu.cn/CN/abstract/abstract2696.shtml
[14] 姚宜斌. GPS精密定位定轨后处理算法与实现[D]. 武汉大学, 2004 Yao Yibin. Research on the Algorithm and Realization of Post-processing for GPS Precise Positioning and Orbit Determination[D].Wuhan University, 2004
[15] Li M, Qu L, Zhao Q, et al. Precise Point Positioning with the BeiDou Navigation Satellite System[J]. Sensors, 2014, 14(1):927 doi: 10.3390/s140100927
[16] Wu X, Hu X, Wang G, et al. Evaluation of COMPASS Ionospheric Model in GNSS Positioning[J]. Advances in Space Research, 2013, 51(6):959-968 doi: 10.1016/j.asr.2012.09.039
[17] Wu J T, Wu S C, Hajj G A, et al. Effects of Antenna Orientation on GPS Carrier Phase[J]. Astrodynamics, 1992:1 647-1 660 http://adsabs.harvard.edu/abs/1992asdy.conf.1647W