北斗卫星伪距偏差模型估计及其对精密定位的影响

李昕, 张小红, 曾琪, 潘林, 朱锋

李昕, 张小红, 曾琪, 潘林, 朱锋. 北斗卫星伪距偏差模型估计及其对精密定位的影响[J]. 武汉大学学报 ( 信息科学版), 2017, 42(10): 1461-1467. DOI: 10.13203/j.whugis20160062
引用本文: 李昕, 张小红, 曾琪, 潘林, 朱锋. 北斗卫星伪距偏差模型估计及其对精密定位的影响[J]. 武汉大学学报 ( 信息科学版), 2017, 42(10): 1461-1467. DOI: 10.13203/j.whugis20160062
LI Xin, ZHANG Xiaohong, ZENG Qi, PAN Lin, ZHU Feng. The Estimation of BeiDou Satellite-induced Code Bias and Its Impact on the Precise Positioning[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1461-1467. DOI: 10.13203/j.whugis20160062
Citation: LI Xin, ZHANG Xiaohong, ZENG Qi, PAN Lin, ZHU Feng. The Estimation of BeiDou Satellite-induced Code Bias and Its Impact on the Precise Positioning[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1461-1467. DOI: 10.13203/j.whugis20160062

北斗卫星伪距偏差模型估计及其对精密定位的影响

基金项目: 

国家自然科学基金 41474025

湖北省自然科学基金重点项目(杰青) 2015CFA039

详细信息
    作者简介:

    李昕, 硕士, 主要从事GNSS精密定位算法研究. lixinsgg@whu.edu.cn

    通讯作者:

    张小红, 博士, 教授.xhzhang@sgg.whu.edu.cn

  • 中图分类号: P228

The Estimation of BeiDou Satellite-induced Code Bias and Its Impact on the Precise Positioning

Funds: 

The National Natural Science Foundation of China 41474025

the Key Projects of Natural Science Foundation in Hubei Province 2015CFA039

More Information
    Author Bio:

    LI Xin, postgraduate, specializes in algorithm and application of GNSS precision positioning. E-mail: lixinsgg@whu.edu.cn

    Corresponding author:

    ZHANG Xiaohong, PhD, professor. E-mail: xhzhang@sgg.whu.edu.cn

  • 摘要: 现阶段北斗卫星导航系统(BeiDou navigation satellite system,BDS)的同步地球轨道(geostationary orbits,GEO)卫星、中倾斜地球同步轨道(inclined geo-synchronous orbits,IGSO)卫星和中圆地球轨道(medium earth orbit,MEO)卫星均存在伪距偏差,该伪距偏差的存在对精密定位的研究及其应用产生了较大的影响。根据北斗IGSO和MEO卫星的伪距偏差与高度角和频率相关的误差特性,本文分析了测站数目及分布,以及观测时长对建模的影响,选择18个测站2015年全年的数据作为MEO卫星的建模数据,其中可以连续观测到全弧段IGSO卫星的4个测站用于IGSO卫星的建模,采用加权分段线性拟合联合抗差估计的方法建立了北斗卫星伪距偏差改正模型。模型改正后,北斗IGSO和MEO卫星的伪距偏差得到明显的削弱,相比于传统的伪距偏差改正模型,精密单点定位(precise point positioning,PPP)的定位精度和收敛时间均得到提升。
    Abstract: Thecode-phase divergences, which are absent for GPS, GLONASS, and Galileo, are commonlyfound in BDS geostationary (GEO), Inclined GeoSynchronous Orbit (IGSO) and Medium Earth Orbit (MEO) satellites. Several precise applications that use code observations are severely affected by these code biases; therefore, it is necessary to correct biases in BDS code observations. Since the BeiDou satellite-induced code bias is confirmed to be orbit type-, frequency-, and elevation-dependent, an improved code bias correction model for IGSO and MEO satellites based on a large amount of the data was developed. To obtain the best fitting results, we analyzed the effect of the number and distribution of stations and observation time on model estimation, and also considered the different influence of multipath at different elevations. A robust estimation method controlled the observation quality. A dataset from 18 stations during one year period in 2015 was employed to estimate the correction model for MEO satellites and four stations for IGSO satellite. To validate the improved correction model, the effect of the code bias on precise point positioning (PPP) before and after correction is analyzed and compared. Results show that systematic variations were eliminated more clearly after applying the improved correction model as compared to the traditional model. After correction, the positioning accuracy of PPP solution was improved and the convergence time decreasedshowing a better performance than results using thetraditional model as proposed by Wanninger and Beer.
  • 图  1   不同频率上的北斗卫星多路径误差序列与高度角序列

    Figure  1.   BDS MP Series and Elevation Series on B1/B2/B3 Frequency

    图  2   不同测站数目和分布建立的模型对SIN1站MP2序列的精度提高情况

    Figure  2.   The Improved Value of MP2 Series 's Accuracy in SIN1 Station by Different Model Considering the Number and Distribution of Stations

    图  3   根据不同时间的数据建立的估计模型及对应模型改正对MP1序列的精度提高情况

    Figure  3.   The Improved Value of MP1 Series's Accuracy by Different Model Considering the Observation Time

    图  4   不同测站伪距偏差改正前后的MP3序列精度

    Figure  4.   The Accuracy of MP3 Series of Different Stations After Correction

    图  5   GMSD测站和JFNG测站3种PPP解算的结果对比

    Figure  5.   Positioning Result for BeiDou PPP with Three Different Strategies in GMSD and JFNG Station

    表  1   改进模型对应的节点伪距改正值

    Table  1   Piecewise Linear Correction Values for BeiDou Code Measurements for Improved Model

    高度角/(°) 改正值/m
    IGSO卫星 MEO卫星
    B1 B2 B3 B1 B2 B3
    5 -0.238 -0.246 -0.406 -0.375 -0.400 -0.134
    10 -0.540 -0.421 -0.211 -0.405 -0.238 -0.174
    15 -0.430 -0.296 -0.169 -0.314 -0.213 -0.112
    20 -0.274 -0.272 -0.157 -0.220 -0.228 -0.131
    25 -0.255 -0.260 -0.138 -0.180 -0.131 -0.047
    30 -0.265 -0.227 -0.253 -0.144 -0.113 -0.052
    35 -0.168 -0.154 -0.089 -0.179 -0.114 -0.081
    40 -0.137 -0.115 -0.118 -0.091 -0.065 -0.030
    45 -0.064 -0.068 -0.073 0.005 0.006 0.044
    50 -0.019 -0.041 -0.010 0.081 0.068 0.048
    55 0.025 0.037 -0.008 0.222 0.187 0.083
    60 0.130 0.079 0.049 0.322 0.224 0.133
    65 0.175 0.116 0.084 0.463 0.326 0.201
    70 0.238 0.167 0.127 0.631 0.440 0.287
    75 0.234 0.202 0.152 0.716 0.485 0.288
    80 0.272 0.250 0.207 0.918 0.583 0.367
    85 0.302 0.259 0.155 0.955 0.628 0.393
    下载: 导出CSV

    表  2   3种PPP处理策略的定位结果精度

    Table  2   Positioning Errors for BeiDou PPP with Three Different Strategies

    定位精度/m 无改正 传统模型 改进模型
    E方向 0.189 0.172 0.156
    N方向 0.157 0.143 0.127
    U方向 0.429 0.414 0.295
    下载: 导出CSV
  • [1]

    Hauschild A, Montenbruck O, Sleewaegen J M, et al. Characterization of Compass M-1 Signals[J].GPS Solutions, 2012, 16(1):117-126 doi: 10.1007/s10291-011-0210-3

    [2]

    Hauschild A, Montenbruck O, Thoelert S, et al. A Multi-technique Approach for Characterizing the SVN49 Signal Anomaly, Part 1: Receiver Tracking and IQ Constellation[J].GPS Solutions, 2012, 16(1):19-28 doi: 10.1007/s10291-011-0203-2

    [3]

    Montenbruck O, Hauschild A, Steigenberger P, et al. Three's the Challenge: A Close Look at GPS SVN62 Triple-frequency Signal Combinations Find Carrierphase Variations on the New L5[J].GPS World, 2010(8):8-19 doi: 10.1007/s10291-011-0232-x

    [4]

    Montenbruck O, Hauschild A, Steigenberger P, et al. A Compass for Asia: First Experience with the BeiDou-2 Regional Navigation System[C]. Poster at IGS Workshop in Olsztyn, Poland, 2012

    [5]

    Montenbruck O, Rizos C, Weber R, et al. Getting A Grip on Multi-GNSS: The International GNSS Service MGEX Campaign[J]. GPS World, 2013, 24(2013-07):44-49 http://elib.dlr.de/87388/

    [6]

    Zhang X H, He Xiyang. BDS Triple-frequency Carrier-phase linear Combination Models and Theircharacteristics[J]. Science China Earth Sciences, 2015, 58(06):896-905 doi: 10.1007/s11430-014-5027-9

    [7]

    Li X, Ge M, Zhang H, et al. The GFZ Real-time GNSS Precise Positioning Service System and Its Adaption for Compass[J].Advances in Space Research, 2013, 51(6):1 008-1 018 doi: 10.1016/j.asr.2012.06.025

    [8]

    Li X, Ge M, Zhang H, et al. A Method for Improving Uncalibrated Phase Delay Estimation and Ambiguity-fixing in Real-time Precise Point Positioning[J].Journal of Geodesy, 2013, 87(5):405-416 doi: 10.1007/s00190-013-0611-x

    [9]

    Li X X, Ge M R, Dai X L, et al. Real-time Multi-GNSS Precise Positioning System: GPS, GLONASS, BeiDou, and Galileo[J]. German Navigation. 2015, 89:607-635 doi: 10.1007/s00190-015-0802-8

    [10]

    Wanninger L, Beer S. BeiDou Satellite-induced Code Pseudorange Variations: Diagnosis and Therapy[J].GPS Solutions, 2015, 19(4):639-648 doi: 10.1007/s10291-014-0423-3

    [11]

    Bakker P F D, Tiberius C C J M, Marel H V D, et al. Short and Zero Baseline Analysis of GPS L1 C/A, L5Q, GIOVE E1B, and E5aQ signals[J].GPS Solutions, 2012, 16(1):53-64 doi: 10.1007/s10291-011-0202-3

    [12] 张小红, 郭斐, 李盼, 等. GNSS精密单点定位中的实时质量控制[J].武汉大学学报·信息科学版, 2012, 37(8):940-944 http://ch.whu.edu.cn/CN/abstract/abstract281.shtml

    Zhang Xiaohong, Guo Fei, Li Pan, et al. Real-time Quality Control Procedure for GNSS Precise Point Positioning. [J]. Geomatics and Information Science of Wuhan University, 2012, 37(8):940-944 http://ch.whu.edu.cn/CN/abstract/abstract281.shtml

    [13] 张小红, 丁乐乐.北斗二代观测值质量分析及随机模型精化[J].武汉大学学报·信息科学版, 2013, 38(7):832-835 http://ch.whu.edu.cn/CN/abstract/abstract2696.shtml

    Zhang Xiaohong, Ding Lele. Quality Analysis of the Second Generation Compass Observables and Stochastic Model Refining[J]. Geomatics and Information Science of Wuhan University, 2013, 38(7):832-835 http://ch.whu.edu.cn/CN/abstract/abstract2696.shtml

    [14] 姚宜斌. GPS精密定位定轨后处理算法与实现[D]. 武汉大学, 2004

    Yao Yibin. Research on the Algorithm and Realization of Post-processing for GPS Precise Positioning and Orbit Determination[D].Wuhan University, 2004

    [15]

    Li M, Qu L, Zhao Q, et al. Precise Point Positioning with the BeiDou Navigation Satellite System[J]. Sensors, 2014, 14(1):927 doi: 10.3390/s140100927

    [16]

    Wu X, Hu X, Wang G, et al. Evaluation of COMPASS Ionospheric Model in GNSS Positioning[J]. Advances in Space Research, 2013, 51(6):959-968 doi: 10.1016/j.asr.2012.09.039

    [17]

    Wu J T, Wu S C, Hajj G A, et al. Effects of Antenna Orientation on GPS Carrier Phase[J]. Astrodynamics, 1992:1 647-1 660 http://adsabs.harvard.edu/abs/1992asdy.conf.1647W

图(5)  /  表(2)
计量
  • 文章访问数:  1575
  • HTML全文浏览量:  203
  • PDF下载量:  557
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-01
  • 发布日期:  2017-10-04

目录

    /

    返回文章
    返回