The Feasibility Study on Settlement Monitoring of a Parallel Combination Prediction Method Based on ELMD
-
摘要: 时频分解方法局部均值分解(local mean decomposition,LMD)在沉降监测中已经得到了应用,但在使用中会出现模态混叠现象。总体局部均值分解(ensemble local mean decomposition,ELMD)通过添加辅助噪声可以抑制局部均值分解过程中出现的模态混叠现象。提出了一种基于ELMD的并联式组合沉降预测方法,结合高速铁路某桥梁实际监测数据,在对ELMD模型进行仿真分析的基础上,分别使用ELMD和LMD将一组离散非线性信号分解为3个PF分量和1个剩余分量,并利用支持向量机和卡尔曼滤波进行预测验证。结果表明:使用ELMD进行分解的过程中能够很好地抑制LMD方法中出现的模态混叠问题。在预报精度方面,基于ELMD的并联式组合模型的平均相对误差可以达到8.3%,可为沉降监测的预报工作提供参考和借鉴。Abstract: In the field of time-frequency decomposition, the Local Mean Decomposition(LMD) method is applied in settlement monitoring, but the phenomenon of mode mixing can appear during the application, which results in inaccurate deformation signal extraction.The Ensemble Local Mean Decomposition(ELMD) method can be used to improve the mode of mixing the local mean decomposition by adding auxiliary noise to the original signal, and also can use the statistical characteristics of auxiliary noise to remove the mode mixing. This paper uses simulation data to analyze the model error in the ELMD method and presents a parallel combination prediction method based on ELMD. In the case of high speed railway bridge monitoring data, it divides a series of discrete nonlinear and unstable signal into three product function(PF) components and one remaining component. The method takes advantage of the support vector machine and Kalman filter algorithms to predict these components, and analyses the superiority of ELMD in the case of mode mixing and overall feasibility empirically. The results indicate that: the parallel combination model, based on ensemble local mean decomposition (ELMD), can eliminate the mode mixing problem in the local mean decomposition (LMD) method very well and extracts the deformation signal accurately. In terms of prediction precision, the mean relative error can reach 8.3%, and may provide areference for prediction of deformation monitoring.
-
-
表 1 模型预测精度评定表
Table 1 Comparison of Prediction Errors
期次 ELMD相对误差 LMD相对误差 94 10.069 15.967 95 4.232 6.020 96 4.252 9.919 97 2.755 5.281 98 3.828 6.521 99 8.660 11.131 100 21.497 21.851 101 16.633 18.142 102 8.379 11.569 103 3.361 5.417 MAPE 8.367 11.182 RMSE 0.149 0.213 -
[1] 陈国栋, 黄甜.灰色卡尔曼滤波在沉降监测中的应用[J].测绘科学技术学报, 2014, 31(2):133-135 http://www.cnki.com.cn/Article/CJFDTOTAL-JFJC201402006.htm Chen Guodong. Huang Tian, Application of Gray Kalman Filtering in the Settlement Monitoring[J].Journal of Geomatics Science and Technology. 2014, 31(02):133-135 http://www.cnki.com.cn/Article/CJFDTOTAL-JFJC201402006.htm
[2] 李晓杰, 郭睿, 黄金, 等.神经网络在北斗导航卫星轨道预报中的应用[J].武汉大学学报·信息科学版, 2015, 40(9):1 253-1 258 http://ch.whu.edu.cn/CN/abstract/abstract3330.shtml Li Xiaojie, Guo Rui, Huang Jin, et al. Application of Artificial Neural Network to Orbit Prediction of BeiDou Navigation Satellites[J]. Geomatics and Information Science of Wuhan University, 2015, 40(9): 1 253-1 258 http://ch.whu.edu.cn/CN/abstract/abstract3330.shtml
[3] 许昌, 岳东杰, 董育烦, 等.基于主成分和半参数的大坝变形监测回归模型[J].岩土力学, 2011, 34(12):3 738-3 742 http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201112032.htm Xu Chang, Yue Dongjie, Dong Yufan, et al. Regression Model for Dam Deformation Based on Principal Component and Semi-parametric Analysis[J].Rock and Soil Mechanics, 2011, 34(12):3738-3742 http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201112032.htm
[4] 王新洲, 范千, 许承权, 等.基于小波变换和支持向量机的大坝变形预测[J].武汉大学学报·信息科学版, 2008, 33(5):469-471+507 http://ch.whu.edu.cn/CN/abstract/abstract1592.shtml Wang Xinzhou, Fan Qian, Xu Chengquan, et al. Dam Deformation Prediction Based on Wavelet Transform and Support Vector Machine[J].Geomatics and Information Science of Wuhan University, 2008, 33(5):469-471+507 http://ch.whu.edu.cn/CN/abstract/abstract1592.shtml
[5] 王勇, 杨晶, 张立辉, 等.基于经验模态分解与神经网络的信号预测[J].大地测量与地球动力学, 2011, 31(6):121-123+135 http://youxian.cnki.com.cn/yxdetail.aspx?filename=JSCH201705003&dbname=CJFDPREP Wang Yong, Yang Jing, Zhang Lihui, et al. Analysis of Signal Prediction Based on EMD and ANN[J]. Journal of Geodesy and Geodynamics, 2011, 31(6):121-123+135 http://youxian.cnki.com.cn/yxdetail.aspx?filename=JSCH201705003&dbname=CJFDPREP
[6] 任超, 梁月吉, 庞光锋, 等.基于EEMD的大坝变形多步预测方法研究[J].大地测量与地球动力学, 2015, 35(5):816-820 http://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201505023.htm Ren Chao, Liang Yueji, Pang Guangfeng, et al. A Novel Multi-Step Prediction for Dam Deformation Prediction Based on EEMD[J]. Journal of Geodesy and Geodynamics, 2015, 35(5):816-820 http://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201505023.htm
[7] 张亢. 局部均值分解方法及其在旋转机械故障诊断中的应用研究[D]. 长沙: 湖南大学, 2012 Zhang Kang. Research on Local Mean Decomposition Method and Its Application to Rotating Machinery Fault Diagnosis[D]. Changsha: Hunan University, 2012
[8] 董正坤, 罗亦泳, 蒋斯斯, 等.基于局域均值分解和BP神经网络的大坝变形预测[J].测绘工程, 2015, 24(4):70-73 http://www.cnki.com.cn/Article/CJFDTOTAL-CHGC201504016.htm Dong Zhengkun. Luo Yiyong, Jiang Sisi, et al. Dam Deformation Prediction Based on LMD-BP Network Modeling[J].Engineering of Surveying and Mapping. 2015, 24(4):70-73 http://www.cnki.com.cn/Article/CJFDTOTAL-CHGC201504016.htm
[9] 李胜, 韩永亮, 杨宏伟, 等.露天矿边坡变形的LMD-Elman时序滚动预测研究[J].中国安全科学学报, 2015, 25(6):22-28 http://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201506004.htm Li Sheng, Han Yongliang, Yang Hongwei, et al. Research on LMD-Elman-Based Time-serise Rolling Prediction of Slope Deformation in Open-pitmine[J]. China Safety Science Journal, 2015, 25(6):22-28 http://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201506004.htm
[10] 韩永亮, 李胜, 杨宏伟, 等.基于LMD-BA-ELM的边坡变形时序非线性预测模型研究[J].中国安全科学学报, 2015, 25(9):59-65 http://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201509011.htm Han Yongliang, Li Sheng, Yang Hongwei, et al. Research on LMD-BA-ELM-Based Model for Nonlinear Prediction of Slope Deformation Time-series. [J], China Safety Science Journal, 2015, 25(9):59-65 http://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201509011.htm
[11] 程军圣, 张亢, 杨宇.基于噪声辅助分析的总体局部均值分解方法[J].机械工程学报, 2011, 47(03):55-62 http://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201103010.htm Cheng Junsheng, Zhang Kang, Yang Yu.Ensemble Local Mean Decomposition Method Based on Noise-assisted Analysis[J].Journal of Mechanical Engineering, 2011, 47(03):55-62 http://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201103010.htm
[12] 崔希璋, 於宗俦, 陶本藻, 等, 广义测量平差[M].武汉:武汉大学出版社, 2009 Cui Xizhang, Yu Zongchou, Tao Benzao, et al.Generalize Surveying Adjustment[M] Wuhan: Wu University Press, 2009
[13] 张豪, 许四法.基于经验模态分解和遗传支持向量机的多尺度大坝变形预测[J].岩石力学与工程学报, 2011, 30(S2):3 681-3 688 http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S2042.htm Zhang Hao, Xu Sifa.Multi-scale Dam Deformation Prediction Based on Empirical Mode Decomposition and Genetic Algorithm for Support Vector Machines[J] Chinese Journal of Rock Mechanics and Engineering.2011, 30(S2): 3 681-3 688 http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S2042.htm
-
期刊类型引用(15)
1. 肖泽辉,季青,庞小平,闫忠男. 利用海洋2B卫星数据反演南极海冰表面积雪厚度. 测绘地理信息. 2024(06): 64-68 . 百度学术
2. 张颖,刘建强,石立坚,蒋城飞. 极地海冰观测卫星的发展现状与展望. 遥感技术与应用. 2024(06): 1339-1352 . 百度学术
3. 陈国栋,陈钰,金涛勇,张志杰,李黎. 利用Cryosat-2 SAR模式数据确定北冰洋海平面模型. 大地测量与地球动力学. 2023(06): 606-611+621 . 百度学术
4. 于亚冉,王丽华,张梦悦. 基于CryoSat-2的北极海冰类型分类. 测绘与空间地理信息. 2022(01): 147-150 . 百度学术
5. 陈国栋,梁圣豪,孟子淇,朱家亨. 利用Cryosat-2数据确定格陵兰冰盖高程和体积变化. 苏州科技大学学报(自然科学版). 2022(01): 66-70+76 . 百度学术
6. 屈猛,赵羲,庞小平,雷瑞波. 北极冰间水道区域的物理过程和遥感观测研究进展. 地球科学进展. 2022(04): 382-391 . 百度学术
7. 高翔,庞小平,季青. 利用CryoSat-2测高数据研究南极威德尔海海冰出水高度时空变化. 武汉大学学报(信息科学版). 2021(01): 125-132 . 百度学术
8. 张婷,张杰,张晰. 基于CryoSat-2数据的2014—2018年北极海冰厚度分析. 海洋科学进展. 2020(03): 425-434 . 百度学术
9. 王志勇,王丽华,张晰,孙伟富,刘健. 雷达高度计在海冰厚度探测中的研究进展. 遥感信息. 2020(05): 1-8 . 百度学术
10. 满富康,夏文韬,张杰,柯长青. 基于OSI-SAF微波遥感数据的北极一年冰和多年冰研究. 极地研究. 2019(01): 69-83 . 百度学术
11. 吴星泉,张胜军,车德福. 利用CryoSat-2卫星测高资料确定北极海冰干舷高. 测绘通报. 2019(07): 64-68 . 百度学术
12. 庞小平,刘清全,季青. 北极一年海冰表面积雪深度遥感反演与时序分析. 武汉大学学报(信息科学版). 2018(07): 971-977 . 百度学术
13. 蒋广敏,戴利,代欣. 基于改进遗传算法的镀层氧化膜厚度测量研究. 周口师范学院学报. 2018(05): 121-124 . 百度学术
14. 王蔓蔓,柯长青,邵珠德. 基于CryoSat-2卫星测高数据的北极海冰体积估算方法. 海洋学报. 2017(03): 135-144 . 百度学术
15. 袁乐先,李斐,张胜凯,朱婷婷,左耀文. 利用ICESat/GLAS数据研究北极海冰干舷高度. 武汉大学学报(信息科学版). 2016(09): 1176-1182 . 百度学术
其他类型引用(20)