联合CryoSat-2测高数据和地面高程数据建立东南极拉斯曼丘陵地区DEM

肖峰, 李斐, 张胜凯, 袁乐先, 朱婷婷

肖峰, 李斐, 张胜凯, 袁乐先, 朱婷婷. 联合CryoSat-2测高数据和地面高程数据建立东南极拉斯曼丘陵地区DEM[J]. 武汉大学学报 ( 信息科学版), 2017, 42(10): 1417-1422. DOI: 10.13203/j.whugis20160011
引用本文: 肖峰, 李斐, 张胜凯, 袁乐先, 朱婷婷. 联合CryoSat-2测高数据和地面高程数据建立东南极拉斯曼丘陵地区DEM[J]. 武汉大学学报 ( 信息科学版), 2017, 42(10): 1417-1422. DOI: 10.13203/j.whugis20160011
XIAO Feng, LI Fei, ZHANG Shengkai, YUAN Lexian, ZHU Tingting. DEM Production for Larsemann Hills Combining Cryosat-2 and Ground-based Elevation Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1417-1422. DOI: 10.13203/j.whugis20160011
Citation: XIAO Feng, LI Fei, ZHANG Shengkai, YUAN Lexian, ZHU Tingting. DEM Production for Larsemann Hills Combining Cryosat-2 and Ground-based Elevation Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1417-1422. DOI: 10.13203/j.whugis20160011

联合CryoSat-2测高数据和地面高程数据建立东南极拉斯曼丘陵地区DEM

基金项目: 

国家自然科学基金 41531069

国家自然科学基金 41176173

国家重大科学研究计划 2012CB957701

南北极环境综合考察及资源潜力评估项目 CHINARE2016

详细信息
    作者简介:

    肖峰, 博士生, 主要从事卫星测高在极地的应用研究.xiaofengcrazy@whu.edu.cn

    通讯作者:

    张胜凯, 博士, 副教授.zskai@whu.edu.cn

  • 中图分类号: P228

DEM Production for Larsemann Hills Combining Cryosat-2 and Ground-based Elevation Data

Funds: 

The National Natural Science Foundation of China 41531069

The National Natural Science Foundation of China 41176173

the National Major Scientific Research Program 2012CB957701

the Chinese Polar Environment Comprehensive Investigation & Assessment Programme CHINARE2016

More Information
    Author Bio:

    XIAO Feng, PhD scandidate, specialized in satellite altimetry application in polar region. E-mail: xiaofengcrazy@whu.edu.cn

    Corresponding author:

    ZHANG Shengkai, PhD, associate professor. E-mail:zskai@whu.edu.cn

  • 摘要: 拉斯曼丘陵地区位于东南极伊丽莎白公主地,中国南极中山站位于拉斯曼丘陵的东部,是中国南极科学考察的重要地区。数字高程模型(DEM)是南极冰盖变化研究的基础,卫星测高数据是南极地区构建DEM的主要数据来源。CryoSat-2是新一代用于极地冰盖和海冰监测的测高卫星,联合2013年和2014年南极冬季的CryoSat-2测高数据以及中国、澳大利亚、印度三个国家现场测量的60余个地面高程数据,利用克里金插值方法建立了拉斯曼丘陵地区200 m分辨率的DEM(简称LA-DEM)。利用未参与插值的地面高程数据对新建立的LA-DEM进行了验证,并与Bamber 1km DEM、ICESat DEM、RAMPv2 DEM以及BEDMAP 2等四种国际上常用的南极DEM进行比较,结果表明LA-DEM的高程精度约为19.7 m,优于其他4种南极DEM。
    Abstract: Larsemann Hills, located on the Ingrid Christensen Coast of Princess Elizabeth Land in East Antarctica, is an ideal area for Antarctic ice sheet and oceanographic studies. Digital elevation models are of importance to many geoscientific and environmental studies in Antarctic and due to relatively poor coverage by ground based surveys, the main data source for developing Antarctic DEMs is satellite altimetry. The new operating satellite-borne altimeter for ice applications is the ESA satellite CryoSat-2, launched in April 2010. Based on CryoSat-2 data collected during austral winter of 2013 and 2014 and ground based elevation points from China, India, and Australia, a new 200 m DEM for the Larsemann Hills, termed LA-DEM, was derived by the Ordinary Kriging method. The accuracy of LA-DEM was assessed by residual elevation points. The results show that the accuracy of LA-DEM is about 19.7 m, andbetter than four commonly used Antarctic DEMs.
  • 图  1   拉斯曼丘陵地区CryoSat-2卫星地面轨迹和高程点点位图,底图为Landsat-7影像

    Figure  1.   Coverages of CryoSat-2 Tracksand Elevation Points in the Larsemann Hills, The Map is Based on Landsat-7 images

    图  2   DEM建立流程图

    Figure  2.   Flow Chart of DEM Generation

    图  3   拉斯曼丘陵地区DEM三维曲面图

    Figure  3.   DEM (3D-Surface) of a Region in the Larsemann Hills

    图  4   地面高程点与5种DEM高程差折线图

    Figure  4.   Line Chart of Elevation Differences Between Ground-based Points and the Five DEMs

    表  1   中国、澳大利亚、印度3国地面高程数据统计

    Table  1   Ground-based Elevation Points from China, Australia, and India

    中国高程数据 澳大利亚高程数据 印度高程数据
    经度/(°) 纬度/(°) 高程/m 经度/(°) 纬度/(°) 高程/m 经度/(°) 纬度/(°) 高程/m
    76.005 -69.433 62 76.255 -69.343 10 76.241 -69.343 25
    75.996 -69.435 101 76.303 -69.348 5 76.071 -69.404 5
    76.096 -69.411 138 76.183 -69.349 5 76.337 -69.387 15
    76.109 -69.408 134 76.350 -69.350 10 76.298 -69.380 100
    76.370 -69.373 28 76.381 -69.391 80 76.318 -69.438 255
    76.369 -69.372 42 76.318 -69.396 10 76.084 -69.477 105
    76.378 -69.373 25 76.244 -69.396 5 76.498 -69.397 40
    76.380 -69.389 80 76.002 -69.410 30 76.198 -69.406 30
    76.373 -69.387 63 76.374 -69.413 110 76.138 -69.356 10
    76.360 -69.396 95 76.363 -69.424 210 76.099 -69.415 85
    76.364 -69.372 32 76.006 -69.431 5 76.186 -69.413 25
    76.360 -69.371 40 76.132 -69.438 30 76.184 -69.401 25
    76.373 -69.375 44 76.178 -69.463 190 76.171 -69.400 25
    76.370 -69.376 68 76.243 -69.459 245 76.161 -69.401 25
    76.137 -69.363 65 76.259 -69.425 125 76.190 -69.408 50
    76.139 -69.367 74 75.943 -69.411 15 76.202 -69.407 50
    76.416 -69.396 120 76.028 -69.438 45 76.190 -69.416 25
    76.583 -69.347 74 76.022 -69.373 5 76.177 -69.410 25
    76.586 -69.346 56 76.186 -69.381 30 76.177 -69.403 50
    76.185 -69.411 118 76.226 -69.422 55 76.179 -69.405 50
    76.188 -69.405 65 76.115 -69.383 35
    76.396 -69.403 149 76.267 -69.396 40
    76.393 -69.404 157 76.220 -69.393 20
    76.113 -69.418 94 76.333 -69.353 55
    76.207 -69.413 92 76.444 -69.416 110
    76.077 -69.435 140
    下载: 导出CSV

    表  2   地面高程点与5种DEM高程差统计

    Table  2   Statistics of the Comparison Between Ground-based Elevation Points and the Five DEMs

    地面高程点 地面高程点与各DEM高程值差/m
    经度/(°) 纬度/(°) 高程/m Bamber 1 km DEM ICESat DEM RAMPv2 DEM BEDMAP 2 LA-DEM
    76.005 -69.431 5 -33.012 -92 -23 -24 -31.711
    76.381 -69.391 80 -53.699 21 25 24 12.522
    76.179 -69.405 50 -5.472 12 33 34 -1.254
    76.186 -69.413 25 -45.432 25 -3 -3 -7.094
    76.19 -69.408 50 -20.432 12 24 23 -0.291
    76.202 -69.407 50 -30.879 -33 29 28 10.205
    76.177 -69.41 25 -45.432 32 11 1 -21.477
    76.364 -69.372 32 -100.492 -41 15 14 -4.761
    76.369 -69.373 27 -105.013 -45 10 11 -8.925
    76.370 -69.376 68 -64.580 -5 48 49 40.234
    平均值/m -50.444 -11.400 14.300 15.764 -1.255
    标准差/m 32.237 39.948 22.306 20.894 19.678
    下载: 导出CSV
  • [1] 陈春明, 鄂栋臣, 桑吉章.南极拉斯曼丘陵地区大地测量控制网[J].南极研究, 1995, 7(3): 95-100 http://youxian.cnki.com.cn/yxdetail.aspx?filename=WHCH201710012&dbname=CJFDPREP

    Chen Chunming, E Dongchen, Sang Jizhang. Geodetic Network at Larsemann Hills, Antarctica[J]. Antarctic Research, 1995, 7(3): 95-100 http://youxian.cnki.com.cn/yxdetail.aspx?filename=WHCH201710012&dbname=CJFDPREP

    [2]

    Harris U. Larsemann Hills-Mappingfrom Aerial Photography Captured February 1998[EB/OL]. Australian Antarctica Data Centre, http://data.aad.gov.au/aadc/metadata, 2002

    [3]

    Reddy C D, Dhar A. Magnetic Anomaly Map for Bharati Promontory, Larsemann Hills, East Ant-arctic [J]. Current Science, 2008, 94(12): 715-717 http://www.academia.edu/2670895/Hydrological_Sciences_A_report_to_IAHS_2011

    [4]

    Bamber J L, BindschadIer R A. AnImproved Elevation Data Set for Climate and Ice-Sheet Modeling: Validation with Satellite Imagery[J].Ann Glacial, 1997, 25: 430-444

    [5]

    Liu H, Jezek K C, Li B. Development Ffan Antarctic Digital Elevation Model by Integrating Cartographic and Remotely Sensed Data: A Geographic Information System Based Approach [J]. Journal of Geophysical Research, 1999, 104(B10): 199-213

    [6]

    DiMarzio J, Brenner A, Schutz R, et al. GLAS/ICESat 500 m Laser Altimetry Digital Elevation Model of Antarctica[R]. National Snow and Ice Data Center (Digital media), Boulder, Colorado, USA, 2007

    [7]

    Bamber J L, Gomez-Dans J L, Griggs J A. ANew 1 km Digital Elevation Model of the Antarctic Derived from Combined Satellite Radar and Laser Data-Part 1: Data and Methods[J]. The Cryosphere, 2009, 3: 101-111 doi: 10.5194/tc-3-101-2009

    [8]

    Jawak S D, Luis A J. Synergistic Use of Multitemporal RAMP, ICESat and GPS to Construct an Accurate DEM of the Larsemann Hills Region, Antarctica[J]. Advances in Space Research. 2012, 50(4): 457-470 doi: 10.1016/j.asr.2012.05.004

    [9]

    Fretwell P, Pritchard H D, Vaughan D G, et al.Bedmap 2: Improved Ice Bed, Surface and Thickness Datasets for Antarctica[J]. The Cryosphere. 2013, 7(1): 375-393 doi: 10.5194/tc-7-375-2013

    [10] 肖峰, 张胜凯, 鄂栋臣, 等.四种南极数字高程模型的精度比较与分析[J].冰川冻土, 2014, 36(3): 640-648 http://youxian.cnki.com.cn/yxdetail.aspx?filename=WHCH201710012&dbname=CJFDPREP

    Xiao Feng, Zhang Shengkai, E Dongchen, et al. Precision Comparison and Analysis of the Four Antarctic Digital Elevation Models[J]. Journal of Glaciology and Geocryology, 2014, 36(3):640-648 http://youxian.cnki.com.cn/yxdetail.aspx?filename=WHCH201710012&dbname=CJFDPREP

    [11]

    Wingham D J, Francis C R, Baker S, et al. CryoSat: A Mission to Determine the Fluctuations in Earth's Land and Marine Ice Fields[J]. Advances in Space Research, 2006, 37(4): 841-871 doi: 10.1016/j.asr.2005.07.027

    [12] 张胜凯, 肖峰, 李斐, 等. 基于CryoSat-2测高数据的南极局部地区DEM的建立与精度评定[J].武汉大学学报·信息科学版, 2015, 40(11): 1 434-1 439

    Zhang Shengkai, Xiao Feng, Li Fei, et al. DEM Development and Precision Analysis in Two Local Areas of Antarctica, Using Cryosat-2 Altimetry Data[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1 434-1 439 基于CryoSat-2测高数据的南极局部地区DEM的建立与精度评定

    [13]

    Bamber J, Gomez-Dans J L. TheAccuracy of Digital Elevation Models of the Antarctic Continent [J]. Earth and Planetary Science Letters, 2005, 237(3-4): 516-523 doi: 10.1016/j.epsl.2005.06.008

  • 期刊类型引用(11)

    1. 赵涛,叶世榕,罗歆琪,夏朋飞. GNSS-IR潮位反演中高仰角数据质量控制方法. 武汉大学学报(信息科学版). 2024(01): 68-76 . 百度学术
    2. 肖倩雨,周春霞,刘勇. 利用改进的亮温日较差法探测格陵兰冰盖表面融化. 武汉大学学报(信息科学版). 2024(10): 1931-1939 . 百度学术
    3. 李荣兴,何美茜,葛绍仓,程远,安璐. 东南极历史冰流速过估改正. 武汉大学学报(信息科学版). 2023(10): 1661-1669 . 百度学术
    4. 张冕,张春灌,赵敏,钟振华,袁炳强,周磊,韩梅. 地球磁异常EMAG2v3与全球重力数据库V29数据质量综合评估——以北极地区Aegir脊为例. 物探与化探. 2023(06): 1410-1416 . 百度学术
    5. 张金辉,李姗姗,杨光,范雕,凌晴. 联合CTD、海底地形和ARGO数据构建北太平洋深海时变温度模型. 测绘通报. 2023(12): 94-101+126 . 百度学术
    6. 徐天河,穆大鹏,闫昊明,郭金运,尹鹏. 近20年海平面变化成因研究进展及挑战. 测绘学报. 2022(07): 1294-1305 . 百度学术
    7. 徐天河,杨元元,穆大鹏,尹鹏. 近海海平面变化成因分析. 武汉大学学报(信息科学版). 2022(10): 1750-1757 . 百度学术
    8. 陈旭升,张云龙,张冠军. 优化局部均值分解在趋势信息提取中的应用. 测绘科学. 2022(11): 32-39 . 百度学术
    9. 房婷婷,付广裕. 卫星重力与地球重力场的文献计量分析. 地球科学进展. 2021(05): 543-552 . 百度学术
    10. 冯哲颖,岳林蔚,沈焕锋. 基于多源水文数据融合的GRACE水储量精度校正. 遥感技术与应用. 2021(03): 605-617 . 百度学术
    11. 刘冰石,邹贤才. ENSO影响下的西太平洋地区海陆水储量变化分析. 武汉大学学报(信息科学版). 2019(09): 1296-1303 . 百度学术

    其他类型引用(11)

图(4)  /  表(2)
计量
  • 文章访问数:  1983
  • HTML全文浏览量:  211
  • PDF下载量:  373
  • 被引次数: 22
出版历程
  • 收稿日期:  2016-06-28
  • 发布日期:  2017-10-04

目录

    /

    返回文章
    返回