Systematic Bias Compensation Model of Inter-system Bias and Its Performance Analysis for BDS/GPS Fusion Positioning
-
摘要: 多系统的融合定位可有效提高用户导航定位的连续性、可靠性及定位精度。针对BDS、GPS观测量间存在系统间偏差的实际情况,建立了顾及系统误差的BDS/GPS融合定位模型,即在函数模型中增加附加参数来吸收系统间偏差,构造了新的顾及先验信息的融合定位模型,分析了这种新融合模型的特点及其对定位结果的影响。利用不同品牌接收机在中国不同地域对新的融合模型进行试验,试验结果表明:BDS、GPS观测量存在系统间偏差,且不同接收机的系统间偏差量值并不一样;增加系统参数的融合定位模型能较好地吸收BDS、GPS观测量的系统间偏差的影响,改善其融合导航定位性能;在观测卫星数不足、单系统不能定位的情况下,考虑先验信息的融合定位模型仍能获得较好的定位结果。Abstract: Navigation users will significantly benefit from BDS and GPS positioning fusion in terms of availability, accuracy and reliability. However, for single point positioning, systematic biases between multi-GNSS systems cannot be eliminated completely, thus the accuracy of positioning and navigation is not always improved with the un-difference measurements of multi-GNSS systems. In this paper, an integrated BDS/GPS positioning model with unknown systematic parameters that compensates for systematic bias is proposed. Furthermore, a Bayesian estimation of fusion positioning model is specifically investigated in which the priori information of the additional parameters is taken into account. Real data collected from different areas with different types of receivers are used to verify those new algorithms. The results show that (a) receiver-dependent inter-system biases are quite evident, while the size of the system bias varies with the receiver type; (b) the precision of fusion positioning is improved significantly by introducing additional parameters into the functional model; and (c) Bayesian estimation of fusion positioning model can still obtain ideal position solution when the number of visible satellites is not enough.
-
-
表 1 不同测站(仪器)系统间偏差的精度统计
Table 1 Statistics of Estimated Inter-system Bias in Different Stations with Different Type Receivers
测站 站号 仪器 天气 系统间偏差/ns 2014-08-14 2014-08-15 2014-08-16 三亚 C Trimble R9 晴 99.33±2.17 98.14±3.06 97.60±2.99 桂林 D Trimble R9 阴转雨 110.24±3.26 108.76±4.038 105.05±3.12 宜昌 E UR370-CORS 夜雨 26.13±3.17 28.96±7.09 28.96±7.09 呼和浩特 F HC N71 晴 24.39±5.04 18.85±4.69 20.47±5.41 乌兰浩特 G M300U 暴雨 25.53±3.31 21.37±4.99 22.64±5.65 表 2 单系统定位精度统计/m
Table 2 Statistical Results of Estimated Position by Using GPS or BDS/m
测站 GPS BDS N E U N E U 三亚 ±1.06 ±1.37 ±3.09 ±1.39 ±1.22 ±3.78 桂林 ±1.06 ±1.28 ±2.88 ±1.53 ±1.31 ±4.15 宜昌 ±1.82 ±1.78 ±4.02 ±1.59 ±1.96 ±4.57 呼和浩特 ±1.62 ±1.55 ±2.83 ±2.28 ±1.45 ±3.52 乌兰浩特 ±1.51 ±1.69 ±2.71 ±2.87 ±2.04 ±4.17 天津 ±2.56 ±2.23 ±4.22 ±2.87 ±1.44 ±6.72 表 3 考虑系统间偏差前后的融合定位结果精度统计/m
Table 3 Statistical Results of Different Schemes/m
测站 GPS BDS N E U N E U 三亚 ±2.86 ±3.52 ±12.05 ±0.69 ±0.94 ±2.09 桂林 ±3.14 ±3.47 ±12.02 ±0.69 ±0.87 ±2.04 宜昌 ±1.60 ±2.41 ±5.20 ±1.46 ±2.36 ±4.50 呼和浩特 ±1.27 ±1.26 ±3.07 ±1.07 ±1.1 ±1.90 乌兰浩特 ±1.46 ±1.48 ±3.35 ±1.04 ±1.19 ±1.88 天津 ±48.87 ±69.90 ±151.72 ±1.44 ±1.44 ±3.83 表 4 系统间偏差不同约束的融合定位结果精度统计/m
Table 4 Statistical Results of Different Constraints/m
测站 先验约束为0.1 ns 先验约束为3 ns N E U N E U 三亚 ±0.70 ±0.96 ±1.89 ±0.69 ±0.94 ±2.05 桂林 ±0.74 ±0.96 ±1.96 ±0.69 ±0.88 ±2.02 宜昌 ±1.43 ±2.43 ±3.87 ±1.43 ±2.37 ±4.40 呼和浩特 ±0.99 ±1.13 ±1.91 ±1.02 ±1.10 ±1.89 乌兰浩特 ±1.11 ±1.25 ±1.95 ±1.01 ±1.19 ±1.87 天津 ±1.38 ±1.37 ±3.40 ±1.54 ±1.44 ±3.39 表 5 可见卫星有限条件下GPS/BDS融合定位结果精度统计/m
Table 5 Statistical Results of BDS/GPS Fusion Positioning with Limited Satellite Visibility/m
卫星数 N E U 均值 标准值 均方根 均值 标准值 均方根 均值 标准值 均方根 6颗 估计 9.50 ±8.24 12.57 -11.07 ±1.95 11.24 -2.01 ±6.54 6.83 强约束 8.31 ±2.99 8.82 -4.48 ±1.84 4.84 -10.09 ±6.67 12.07 松约束 4.27 ±2.83 5.12 -6.11 ±1.67 6.33 -8.16 ±6.52 10.44 5颗 估计 1.08 ±18.73 18.73 -8.46 ±4.32 9.50 -8.91 ±13.06 15.79 强约束 13.21 ±4.07 13.83 -4.10 ±1.89 4.52 -15.82 ±8.05 17.74 松约束 10.86 ±4.76 11.85 -5.10 ±1.81 5.41 14.46 -±8.23 16.63 -
[1] 杨元喜.北斗卫星导航系统的进展、贡献与挑战[J].测绘学报, 2010, 39(1):1-6 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201001003.htm Yang Yuanxi. Progress, Contribution and Challenges of Compass/Beidou Satellite NavigationSystem[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(1):1-6 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201001003.htm
[2] National Imagery and Mapping. Department of Defense World Geodetic System 1984[S]. NIMA TR8350.2, Third edition, 1997
[3] 中国卫星导航系统管理办公室. 北斗卫星导航系统发展报告(2. 0版)[R]. 2012年5月 China Satellite Navigation Office. Report on the Development of BeiDou Navigation Satellite System (Version 2.0)[R].May 2012(Ch)
[4] 蔡昌盛, 李征航, 张小红. GPS系统硬件延迟修正方法的探讨[J].测绘通报, 2002(4):15-16 http://www.cnki.com.cn/Article/CJFDTOTAL-CHTB200204006.htm Cai Changsheng, Li Zhenghang, Zhang Xiaohong. A Study of Calibration method of GPS Satellite and Receiver Instrumental Biases[J]. Bulletin of Surveying and Mapping, 2002(4):15-16 http://www.cnki.com.cn/Article/CJFDTOTAL-CHTB200204006.htm
[5] Yang Yuanxi, Li Jinlong, Xu Junyi, et al. Generalized DOPs with Consideration of the Influence Function of Signal-in-Space Errors[J]. The Journal of Navigation, 2011, 64: 3-18 doi: 10.1017/S0373463311000415
[6] 高星伟, 过静珺, 程鹏飞, 等.基于时空系统统一的北斗与GPS融合定位[J].测绘学报, 2012, 41(5):743-758, 755 http://youxian.cnki.com.cn/yxdetail.aspx?filename=WHCH201710013&dbname=CJFDPREP Gao Xinwei, Guo Jinjun, Chen Pengfei, et al. Fusion Positioning of BeiDou/GPS Based on Spatio-Temporal System Unification[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(5):743-748, 755 http://youxian.cnki.com.cn/yxdetail.aspx?filename=WHCH201710013&dbname=CJFDPREP
[7] 王世进, 秘金钟, 李得海, 等. GPS/BDS的RTK定位算法研究[J].武汉大学学报·信息科学版, 2014, 39(5): 621-625 http://ch.whu.edu.cn/CN/abstract/abstract2980.shtml Wang Shijin, Bei Jinzhong, Li Dehai, et al. Real-Time Kinematic Positioning Algorithm of GPS/BDS[J]. Geomantics and Information Science of Wuhan University, 2014, 39(5):621-625 http://ch.whu.edu.cn/CN/abstract/abstract2980.shtml
[8] He Haibo, Li Jinlong, Yang Yuanxi, et al. Performance Assessment of Single-and Dual-frequency BeiDou/GPS Single-epoch Kinematic Positioning[J]. GPS Solution, 2014, 18(3):393-403 doi: 10.1007/s10291-013-0339-3
[9] 李金龙. 北斗/GPS多频实时精密定位理论与算法[D]. 郑州: 信息工程大学, 2014 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=chxb201511020&dbname=CJFD&dbcode=CJFQ Li Jinlong. BDS/GPS Multi-frequency Real-Time Kinematic Positioning Theory and Algorithms[D]. Zhengzhou: Information Engineering University, 2014 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=chxb201511020&dbname=CJFD&dbcode=CJFQ
[10] Guo Hairong, He Haibo, Li Jinlong, et al. Estimation and Mitigation of the Main Errors for Centimetre-level Compass RTK Solutions over Medium-long Baselines[J]. The Journal of Navigation, 2011, 64, S113-S126 doi: 10.1017/S0373463311000324
[11] Jin Yifan, Zeng Anmin. Fusion Positioning of BDS/GPS Based on Variance Component Estimation and Its Application for Geodetic Control Network[C]. Lecture Note in Electrical Engineering, V1, Springer, 2014
[12] 高星伟, 葛茂荣. GPS/GLONASS单点定位的数据处理[J].测绘通报, 1999(4):8-9, 13 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201506011.htm Gao Xingwei, Ge Maorong. Data Processing for Pseudo-range Positioning of GPS/GLONASS[J]. Bulletin of Surveying and Mapping, 1999(4):8-9, 13 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201506011.htm
[13] Cai C, Gao Y. A Combined GPS/GLONASS Navigation Algorithm for use with Limited Satellite Visibility[J]. The Journal of Navigation, 2009(62): 671-685 doi: 10.1017/S0373463309990154
[14] Angrisano A, Gaglione S, Gioia C. Performance Assessment of GPS/GLONASS Single Point Positioning in an Urban Environment[J]. Acta Geod Geophys, 2013(48): 149-161 http://real.mtak.hu/50059/
[15] Montenbruck O, Hauschild A, Hessels U Characterization of GPS/GIOVE Sensor Stations in the CONGO Network[J]. GPS Solutions, 2011, 15:193-205 doi: 10.1007/s10291-010-0182-8
[16] 杨元喜, 曾安敏.大地测量数据融合模式及其分析[J].武汉大学学报·信息科学版, 2008, 33(8):1-4 http://ch.whu.edu.cn/CN/abstract/abstract1674.shtml Yang Yuanxi, Zeng Anmin. Fusion Modes of Various Geodetic Observations and Their Analysis[J]. Geo-matics and Information Science of Wuhan University, 2008, 33(8):1-4 http://ch.whu.edu.cn/CN/abstract/abstract1674.shtml
[17] 杨元喜, 李金龙, 徐君毅, 等.中国北斗卫星导航系统对全球PNT用户的贡献[J].科学通报, 2011, 56(21):1734-1740 http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201121009.htm Yang Yuanxi, Li Jinlong, Xu Junyi, et al. Contribution of the COMPASS Satellite Navigation System to Global PNT Users[J]. Chin Sci Bull, 2011, 56(21):1734-1740 http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201121009.htm
[18] 程鹏飞, 文汉江, 成英燕, 等.2000国家大地坐标系椭球参数与GRS80和WGS84的比较[J].测绘学报, 2009, 38(3):189-194 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB200903000.htm Cheng Pengfei, Wen Hanjiang, Cheng Yingyan, et al. Para Meters of the CGCS2000 Ellipsoid and Comparisons with GRS80 and WGS84[J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(3):189-194 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB200903000.htm
[19] Koch K R. Bayesian Inference with Geodetic Applications[M]. Heidelberg: Springer, 1990
[20] Zeng Anmin, Yang Yuanxi, Ming Feng, et al. BDS-GPS Inter-system Bias of Code Observation and Its Preliminary Analysis[J]. GPS Solutions, DOI: 10.1007/S10291-017-0636-3
-
期刊类型引用(15)
1. 肖泽辉,季青,庞小平,闫忠男. 利用海洋2B卫星数据反演南极海冰表面积雪厚度. 测绘地理信息. 2024(06): 64-68 . 百度学术
2. 张颖,刘建强,石立坚,蒋城飞. 极地海冰观测卫星的发展现状与展望. 遥感技术与应用. 2024(06): 1339-1352 . 百度学术
3. 陈国栋,陈钰,金涛勇,张志杰,李黎. 利用Cryosat-2 SAR模式数据确定北冰洋海平面模型. 大地测量与地球动力学. 2023(06): 606-611+621 . 百度学术
4. 于亚冉,王丽华,张梦悦. 基于CryoSat-2的北极海冰类型分类. 测绘与空间地理信息. 2022(01): 147-150 . 百度学术
5. 陈国栋,梁圣豪,孟子淇,朱家亨. 利用Cryosat-2数据确定格陵兰冰盖高程和体积变化. 苏州科技大学学报(自然科学版). 2022(01): 66-70+76 . 百度学术
6. 屈猛,赵羲,庞小平,雷瑞波. 北极冰间水道区域的物理过程和遥感观测研究进展. 地球科学进展. 2022(04): 382-391 . 百度学术
7. 高翔,庞小平,季青. 利用CryoSat-2测高数据研究南极威德尔海海冰出水高度时空变化. 武汉大学学报(信息科学版). 2021(01): 125-132 . 百度学术
8. 张婷,张杰,张晰. 基于CryoSat-2数据的2014—2018年北极海冰厚度分析. 海洋科学进展. 2020(03): 425-434 . 百度学术
9. 王志勇,王丽华,张晰,孙伟富,刘健. 雷达高度计在海冰厚度探测中的研究进展. 遥感信息. 2020(05): 1-8 . 百度学术
10. 满富康,夏文韬,张杰,柯长青. 基于OSI-SAF微波遥感数据的北极一年冰和多年冰研究. 极地研究. 2019(01): 69-83 . 百度学术
11. 吴星泉,张胜军,车德福. 利用CryoSat-2卫星测高资料确定北极海冰干舷高. 测绘通报. 2019(07): 64-68 . 百度学术
12. 庞小平,刘清全,季青. 北极一年海冰表面积雪深度遥感反演与时序分析. 武汉大学学报(信息科学版). 2018(07): 971-977 . 百度学术
13. 蒋广敏,戴利,代欣. 基于改进遗传算法的镀层氧化膜厚度测量研究. 周口师范学院学报. 2018(05): 121-124 . 百度学术
14. 王蔓蔓,柯长青,邵珠德. 基于CryoSat-2卫星测高数据的北极海冰体积估算方法. 海洋学报. 2017(03): 135-144 . 百度学术
15. 袁乐先,李斐,张胜凯,朱婷婷,左耀文. 利用ICESat/GLAS数据研究北极海冰干舷高度. 武汉大学学报(信息科学版). 2016(09): 1176-1182 . 百度学术
其他类型引用(20)