-
摘要: 将道路网络空间视为嵌在2D空间中的独立子空间,利用形态单一的线性单元剖分图结构的边,实现网络空间的栅格化;提取网格模式的典型特征,包括几何和拓扑特征,以栅格单元邻域为目标计算特征值,构建特征向量描述栅格单元,实现对象空间到特征空间的映射,构建空间向量场;基于支持向量机(support vector machine,SVM)实现网格模式分类;结合格式塔原则完善实验结果。将此方法应用于深圳市路网数据,实验结果表明能有效地识别网格模式。Abstract: Avector tessellation method is proposed for grid pattern recognition in street networks. This study regards a street network as an independent subspace embedded in the 2D space, and subdivides street segments into linear elements with equal lengths. The characteristics of grid patterns are extracted, including directional, geometrical and topological features. To map the object space to the feature space and to build a vector field, the linear element is described as a feature vector and the eigenvalues are calculated with the neighboring elements. A grid pattern classification is realized based on a support vector machine (SVM), and the classification result is optimized based on Gestalt principles. The method was applied to the street network of Shenzhen. The experimental results show that the method effectively mines grid pattern in street networks.
-
Keywords:
- street network space /
- grid pattern /
- spatial tessellation /
- feature extraction /
- SVM
-
-
表 1 栅格单元A、B指标统计
Table 1 Indexes Values of Element A and Element B
D V M G T A 0.907 69 1 0.2 0.842 7 0.62 B 0.960 97 1 1.0 0.663 4 0.89 -
[1] Louf R, Barthelemy M. A Typology of Street Patterns[J]. Journal of the Royal Society Interface, 2014, 11(101), 924-933 https://128.84.21.199/abs/1410.2094?context=cond-mat
[2] Marshall S. Streets and Patterns[M]. London, the United Kingdom:Routledge, 2004
[3] Heinzle F, Anders K H, Sester M. Graph Based Approaches for Recognition of Patterns and Implicit Information in Road Networks[C]. Proceedings of the 22nd International Cartographic Conference, A Coruña, Spain, 2005
[4] Heinzle F, Anders K H, Sester M. Pattern Recognition in Road Networks on the Example of Circular Road Detection[M]//Geographic Information Science. Berlin, Germany:Springer-Verlag, 2006
[5] 田晶, 艾廷华, 雷华清.运用自组织映射识别街道网中的网格模式[J].武汉大学学报·信息科学版, 2012, 37(3):362-365 http://ch.whu.edu.cn/CN/abstract/abstract158.shtml Tian Jing, Ai Tinghua, Lei Huaqing. Recognition of Grid Pattern in Street Network Using Self-organizing Maps[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3):362-365 http://ch.whu.edu.cn/CN/abstract/abstract158.shtml
[6] 田晶, 艾廷华, 丁绍军.基于C4.5算法的道路网网格模式识别[J].测绘学报, 2012, 41(1):121-126 http://www.nsfc.gov.cn/publish/portal0/tab87/info53458.htm Tian Jing, Ai Tinghua, Ding Shaojun. Grid Pattern Recognition in Road Networks Based on C4.5 Algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(1):121-126 http://www.nsfc.gov.cn/publish/portal0/tab87/info53458.htm
[7] Yang B, Luan X, Li Q. An Adaptive Method for Identifying the Spatial Patterns in Road Networks[J]. Computers, Environment and Urban Systems, 2010, 34(1):40-48 doi: 10.1016/j.compenvurbsys.2009.10.002
[8] Heinzle F, Anders K H, Sester M. Automatic Detection of Pattern in Road Networks-Methods and Evaluation[C]. Proceedings of Joint Workshop Visualization and Exploration of Geospatial Data, Stuttgart, Germany, 2007
[9] Porta S, Crucitti P, Latora V. The Network Analysis of Urban Streets:a Dual Approach[J]. Physica A:Statistical Mechanics and its Applications, 2006, 369(2):853-866 doi: 10.1016/j.physa.2005.12.063
[10] Xie F, Levinson D. Measuring the Structure of Road Networks[J]. Geographical Analysis, 2007, 39(3):336-356 doi: 10.1111/gean.2007.39.issue-3
[11] Jiang B. A Topological Pattern of Urban Street Networks:Universality and Peculiarity[J]. Physica A:Statistical Mechanics and its Applications, 2007, 384(2):647-655 doi: 10.1016/j.physa.2007.05.064
[12] Jiang B, Claramunt C. A Structural Approach to the Model Generalization of an Urban Street Network[J]. Geo-Informatica, 2004, 8(2):157-171 doi: 10.1023/B:GEIN.0000017746.44824.70
[13] Jiang B, Duan Y, Lu F, et al. Topological Structure of Urban Street Networks from the Perspective of Degree Correlations[J]. Environment and Planning B:Planning and Design, 2013, 41(5):813-828 https://arxiv.org/pdf/1308.1533
[14] Ai T, Cheng X, Liu P, et al. A Shape Analysis and Template Matching of Building Fea-tures by the Fourier Transform Method[J]. Computers, Environment and Urban Systems, 2013, 41:219-233 doi: 10.1016/j.compenvurbsys.2013.07.002
[15] Ai T, Yu W, He Y. Generation of Constrained Network Voronoi Diagram Using Linear Tessellation and Expansion Method[J]. Computers, Environment and Urban Systems, 2015, 51:83-96 doi: 10.1016/j.compenvurbsys.2015.02.001
[16] She B, Zhu X, Ye X, et al. Weighted Network Voronoi Diagrams for Local Spatial Analysis[J]. Computers, Environment and Urban Systems, 2015, 52:70-80 doi: 10.1016/j.compenvurbsys.2015.03.005
[17] Yamada I, Thill J C. Local Indicators of Network-Constrained Clusters in Spatial Point Patterns[J].Geographical Analysis, 2007, 39(3):268-292 doi: 10.1111/gean.2007.39.issue-3
[18] Xie Z, Yan J. Kernel Density Estimation of Traffic Accidents in a Network Space[J]. Computers, Environment and Urban Systems, 2008, 32(5):396-406 doi: 10.1016/j.compenvurbsys.2008.05.001
[19] Okabe A, Satoh T, Sugihara K. A Kernel Density Estimation Method for Networks, its Computational Method and a GIS-Based Tool[J]. International Journal of Geographical Information Science, 2009, 23(1):7-32 doi: 10.1080/13658810802475491
[20] Goodchild M F. Geographical Data Modeling[J]. Computers & Geosciences, 1992, 18(4):401-408 https://www.sciencedirect.com/science/article/pii/0098300492900694
[21] Hunter G J, Goodchild M F. A New Model for Handling Vector Data Uncertainty in Geographic Information Systems[C]. Proceeding of the Urban and Regional Information Systems Association, San Antouio, USA, 1995
[22] O'Sullivan D, Unwin D. Geographic Informat-ion Analysis[M]. Hoboken, USA:John Wiley, 2002
[23] Chang C C, Lin C J. LIBSVM: A Library for Support Vector Machine[OL]. https://www.csie.ntu.edu.tw/~cjlin/libsvm/, 2011