利用松弛标记法进行空间场景匹配

Spatial Scenes Matching with on Relaxation Labeling Approach

  • 摘要: 相似性度量是地理学中的关键组成部分,被广泛应用于空间检索、空间信息整合及空间数据挖掘中。因为空间场景中实体个数的差异及空间对象间的关系难以精确相等,若执行空间场景的完全精确匹配,可能会使得检索结果为空。顾及尺度差异,从空间场景中进行空间语义理解,建立了多尺度空间场景的形式化描述模型,并提取场景中稳定的特征构建空间场景特征矩阵。建立场景间的初始匹配概率矩阵后,基于松弛标记法迭代更新概率矩阵,直到矩阵收敛于一全局最小值并确定匹配的实体对,从而进行空间场景相似性评估。采用武汉居民地域数据进行场景匹配实验,并对不同邻域搜索半径下的匹配时间及精确度进行对比与分析,实验结果表明,基于松弛标记法的空间场景匹配方法具有较高的精确度。

     

    Abstract: Similarity measurement is the key of Geography Information System (GIS), it is widely applied to spatial retrieval, spatial information integration and spatial data mining, etc. By considering the scale difference and studying the spatial semantics of spatial scenes, this paper build a formalized description model of spatial scene. According to the description model, multi-scale spatial scenes can be abstracted to feature matrices that contain the essential features. With feature matrices, we establish the initial probability matrix of spatial scenes, and iteratively update the matrix by relaxation labeling approach until it convergences to a global minimum value. After that the matched objects between two spatial scenes can be found. Accordingly, we calculate the spatial scenes similarity. In the experiment stage, Wuhan residential region data was adopted. We analyze the accuracy and total time spent of spatial scene matching process under different neighborhood searching radius. The experimental result confirms that spatial scene matching based on relaxation labeling approach has a high accuracy.

     

/

返回文章
返回