GPS卫星钟差及观测数据采样间隔对LEO卫星定轨精度影响

田英国, 郝金明, 陈明剑, 于合理, 衡培深

田英国, 郝金明, 陈明剑, 于合理, 衡培深. GPS卫星钟差及观测数据采样间隔对LEO卫星定轨精度影响[J]. 武汉大学学报 ( 信息科学版), 2017, 42(12): 1792-1796. DOI: 10.13203/j.whugis20150591
引用本文: 田英国, 郝金明, 陈明剑, 于合理, 衡培深. GPS卫星钟差及观测数据采样间隔对LEO卫星定轨精度影响[J]. 武汉大学学报 ( 信息科学版), 2017, 42(12): 1792-1796. DOI: 10.13203/j.whugis20150591
TIAN Yingguo, HAO Jinming, CHEN Mingjian, YU Heli, HENG Peishen. Impact of Sample Rate of GPS Satellite Clock and Observation Data on LEO GPS-Based Precise Orbit Determination[J]. Geomatics and Information Science of Wuhan University, 2017, 42(12): 1792-1796. DOI: 10.13203/j.whugis20150591
Citation: TIAN Yingguo, HAO Jinming, CHEN Mingjian, YU Heli, HENG Peishen. Impact of Sample Rate of GPS Satellite Clock and Observation Data on LEO GPS-Based Precise Orbit Determination[J]. Geomatics and Information Science of Wuhan University, 2017, 42(12): 1792-1796. DOI: 10.13203/j.whugis20150591

GPS卫星钟差及观测数据采样间隔对LEO卫星定轨精度影响

详细信息
    作者简介:

    田英国, 博士生, 主要从事低轨卫星精密定轨研究。tianyg1987@sina.com

  • 中图分类号: P228.41

Impact of Sample Rate of GPS Satellite Clock and Observation Data on LEO GPS-Based Precise Orbit Determination

More Information
    Author Bio:

    TIAN Yingguo, PhD candidate, specializes in LEO satellite precise orbit determination. E-mail: tianyg1987@sina.com

  • 摘要: 针对GPS卫星钟差及观测数据间隔对LEO卫星运动学和约化动力学定轨的影响问题进行了分析,并使用CODE(the Center for Orbit Determination in Europe)30 s、5 s间隔GPS卫星钟差分别进行了30 s和10 s间隔观测数据的LEO卫星定轨实验。结果表明,使用5 s间隔卫星钟差(10 s间隔观测数据)相比30 s间隔卫星钟差(30 s间隔观测数据)进行GRACE卫星精密定轨,约化动力学定轨精度提高了16%,运动学定轨精度提高了8.8%;使用30 s间隔卫星钟差和10 s间隔观测数据的定轨精度最低;对于30 s间隔观测数据,使用30 s或5 s间隔卫星钟差的定轨精度基本一致。
    Abstract: The influence of GPS precise clock and observation data sampling internal on LEO kinematic and reduced-dynamic precise orbit determination (POD) was analyzed. The several experiments of LEO POD were carried out respectively by using the 30 s or 5 s sampling interval GPS precise clock from CODE and the 30 s or 10 s GPS observation data. The results show that 5 s GPS clock and 10 s observation data comparing with 30 s clock and 30 s observation data, the accuracy of reduced-dynamic POD is improved by 16%, and the kinematic POD is 8.8%. The accuracy of LEO POD is the worst by using 10 s observation data and 30 s GPS clock. For 30 s observation data, the accuracy of LEO POD by using 30 s GPS clock is consistent with 5 s GPS clock products from CODE.
  • 图  1   G05和G24卫星30 s钟差内插到5 s残差

    Figure  1.   Error of G05 and G24 Clock Interpolation from 30 s to 5 s Clock Products

    图  2   2014年年积日305~334 d定轨结果与JPL参考轨道互差RMS

    Figure  2.   RMS of Residuals Between Precise Orbits and JPL Published Reference Orbits for DOY 305~334, 2014

    图  3   2014年年积日305~334的运动学与约化动力学定轨结果的互差RMS图

    Figure  3.   RMS of Residuals Between Kinematic Orbits and Reduced-Dynamic Orbits for DOY 305~334, 2014

    图  4   GRACE约化动力学轨道SLR验证结果残差图

    Figure  4.   SLR Residuals for GRACE Reduced-Dynamic Orbits

    表  1   GRACE约化动力学定轨观测模型和力学模型

    Table  1   Reduced-Dynamic POD Observation and Force Model for GRACE

    类别 详细描述
    观测量 无电离层组合L3
    GPS卫星高度截止角
    GPS卫星轨道及钟差 CODE最终轨道及5 s采样间隔钟差产品
    载波相位模糊度 作为未知参数估计
    接收机钟差 历元待估参数
    GPS卫星和接收机天线相位中心改正 考虑
    地球重力场模型 EGM2008 120×120
    N体摄动力 太阳、月球以及其他行星摄动(JPL DE450)
    潮汐摄动 固体潮、极潮及海洋潮汐
    太阳光压和大气阻力 通过经验加速度参数吸收
    卫星轨道状态参数 6个初始轨道根数+ 3个常数经验加速度参数
    经验加速度 每6 min估计一组
    下载: 导出CSV

    表  2   GRACE卫星精密定轨实验方案

    Table  2   POD Experimental Program for GRACE

    方案 GPS观测数据采样间隔/s GPS钟差采样间隔/s
    1 10 5
    2 10 30
    3 30 5
    4 30 30
    下载: 导出CSV

    表  3   定轨结果与JPL参考轨道差值RMS的均值/m

    Table  3   RMS Mean Between Precise Orbits and JPL Published Reference Orbits for DOY 305~334, 2014/m

    轨道 方案1 方案2 方案3 方案4
    运动学轨道 0.024 7 0.027 7 0.027 1 0.027 1
    约化动力学轨道 0.035 0 0.035 5 0.041 8 0.041 8
    下载: 导出CSV
  • [1]

    Melbourne W G, Davis E S, Yunck T P, et al. The GPS Flight Experiment on TOPEX/POSEIDON[J]. Geophysical Research Letters, 1994, 21(19):2171-2174 doi: 10.1029/94GL02192

    [2]

    Haines B, Bertiger W, Desai S, et al. Initial Orbit Determination Results for Jason-1:Towards a 1 cm Orbit[J].Navigation, 2003, 50(3):171-180 doi: 10.1002/navi.2003.50.issue-3

    [3]

    Svehla D, Rothacher M. Kinematic and Reduced-Dynamic Precise Orbit Determination of Low Earth Orbiters[J]. Advances in Geosciences, 2003, 1:47-56 doi: 10.5194/adgeo-1-47-2003

    [4]

    Kang Z, Tapley B, Bettadpur S, et al. Precise Orbit Determination for the GRACE Mission Usingonly GPS Data[J]. Journal of Geodesy, 2006, 80(6):322-331 doi: 10.1007/s00190-006-0073-5

    [5]

    Bock H, Jaggi A, Svehla D, et al. Precise Orbit Determination for the GOCE Satellite Using GPS[J]. Advances in Space Research, 2007, 39(10):1638-1647 doi: 10.1016/j.asr.2007.02.053

    [6] 赵齐乐, 刘经南, 葛茂荣, 等.用PANDA对GPS和CHAMP卫星精密定轨[J].大地测量与地球动力学, 2005, 25(2):113-116 doi: 10.3969/j.issn.1671-5942.2005.02.020

    Zhao Qile, Liu Jingnan, Ge Maorong, et al.Precise Orbit Determination of GPS and CHAMP Satellites with PANDA Software[J].Journal of Geodesy and Geodynamics, 2005, 25(2):113-116 doi: 10.3969/j.issn.1671-5942.2005.02.020

    [7]

    Dow J M, Neilan R E, Rizos C. The International GNSS Service in a Changing Landscape of Global Navigation Satellite Systems[J]. Journal of Geodesy, 2008, 83(3-4):191-198 doi: 10.1007/s00190-008-0300-3

    [8]

    Montenbruck O, Gill E, Kroes R. Rapid Orbit Determination of LEO Satellites Using IGS Clock and Ephemeris Products[J]. GPS Solutions, 2005, 9(3):226-235 doi: 10.1007/s10291-005-0131-0

    [9]

    Hugentobler U. CODE High Rate Clocks. IGS Mail No. 4913[OL]. igscb.jpl.nasa.gov/mail/igsmail/2004/msg00136.html, 2004

    [10]

    Gendt G. Combined IGS Clocks with 30 Second Sampling Rate. IGS Mail No. 55253[OL]. igscb.jpl.nasa.gov/mail/igsmail/2007/msg00003.html, 2006

    [11]

    Bock H, Dach R, Jaggi A, et al. High-Rate GPS Clock Corrections from CODE:Support of 1Hz Applications[J].Journal of Geodesy, 2009, 83(11):1083-1094 doi: 10.1007/s00190-009-0326-1

    [12]

    Schaer S, Dach R. Model Changes Made at CODE. IGS Mail No.5771[OL]. http://igscb.jpl.nasa.gov, 2008

    [13]

    Allan D W. Time and Frequency (Time-Domain) Characterization, Estimation, and Prediction of Precision Clocks and Oscillators[J].IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 1987, 34(6):647-654 https://www.researchgate.net/publication/5560127_Time_and...

    [14]

    Case K, Kruizinga G L H, Wu S C. GRACE Level 1b Data Product User Handbook, JPL D-22027[OL]. http://podaac.jpl.nasa.gov/grace/documentation.html, 2004

    [15] 田英国, 郝金明, 刘伟平, 等.利用KBR数据检核GRACE卫星精密轨道[J].测绘科学技术学报, 2014, 31(6):580-583 http://www.cqvip.com/QK/98086A/201406/663713483.html

    Tian Yingguo, Hao Jinming, Liu Weiping, et al.Checking the GRACE Satellite Orbit Precision Using the KBR Data[J]. Journal of Geomatics Science and Technology, 2015, 31(6):580-583 http://www.cqvip.com/QK/98086A/201406/663713483.html

    [16] 秦显平, 焦文海, 程芦颖, 等.利用SLR检核CHAMP卫星轨道[J].武汉大学学报·信息科学版, 2005, 30(1):38-41 http://ch.whu.edu.cn/CN/abstract/abstract2075.shtml

    Qin Xianping, Jiao Wenhai, Cheng Luying, et al. Evaluation of CHAMP Satellite Orbit with SLR Measurements[J]. Geomantic and Information Science of Wuhan University, 2005, 30(1):38-41 http://ch.whu.edu.cn/CN/abstract/abstract2075.shtml

    [17]

    Jaggi A. Pseudo-Stochastic Orbit Modeling Low Earth Satellites Using the Global Positioning System[D]. Schwitzerland:Astronomical Institute University of Berne, 2007 https://boris.unibe.ch/25278/

    [18] 周晓青, 胡志刚, 张新远.低轨卫星星载GNSS精密定轨的精度检核方法[J].武汉大学学报·信息科学版, 2010, 35(11):1342-1345 http://ch.whu.edu.cn/CN/abstract/abstract1109.shtml

    Zhou Xiaoqing, Hu Zhigang, Zhang Xinyuan.Discussion on POD Accuracy Evaluations for Satellite-Bone LEO Satellites[J]. Geomantic and Information Science of Wuhan University, 2010, 35(11):1342-1345 http://ch.whu.edu.cn/CN/abstract/abstract1109.shtml

图(4)  /  表(3)
计量
  • 文章访问数:  2295
  • HTML全文浏览量:  161
  • PDF下载量:  429
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-11
  • 发布日期:  2017-12-04

目录

    /

    返回文章
    返回