宽幅InSAR大地测量学与大尺度形变监测方法

李鹏, 李振洪, 李陶, 施闯, 刘经南

李鹏, 李振洪, 李陶, 施闯, 刘经南. 宽幅InSAR大地测量学与大尺度形变监测方法[J]. 武汉大学学报 ( 信息科学版), 2017, 42(9): 1195-1202. DOI: 10.13203/j.whugis20150587
引用本文: 李鹏, 李振洪, 李陶, 施闯, 刘经南. 宽幅InSAR大地测量学与大尺度形变监测方法[J]. 武汉大学学报 ( 信息科学版), 2017, 42(9): 1195-1202. DOI: 10.13203/j.whugis20150587
LI Peng, LI Zhenhong, LI Tao, SHI Chuang, LIU Jingnan. Wide-Swath InSAR Geodesy and Its Applications to Large-Scale Deformation Monitoring[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1195-1202. DOI: 10.13203/j.whugis20150587
Citation: LI Peng, LI Zhenhong, LI Tao, SHI Chuang, LIU Jingnan. Wide-Swath InSAR Geodesy and Its Applications to Large-Scale Deformation Monitoring[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1195-1202. DOI: 10.13203/j.whugis20150587

宽幅InSAR大地测量学与大尺度形变监测方法

基金项目: 

中国博士后科学基金 2016M592248

国家测绘地理信息局测绘基础研究基金 14-02-02

山东省自然科学基金 ZR2016DB30

青岛市自主创新计划应用基础研究 16-5-1-25-jch

中央高校基本科研业务费 2042014kf0066

详细信息
    作者简介:

    李鹏, 博士, 讲师, 主要从事InSAR地壳形变监测研究。pengli@ouc.edu.cn

    通讯作者:

    刘经南, 教授, 中国工程院院士。jnliu@whu.edu.cn

  • 中图分类号: P228

Wide-Swath InSAR Geodesy and Its Applications to Large-Scale Deformation Monitoring

Funds: 

China Postdoctoral Science Foundation 2016M592248

the Open Research Fund Program of the Key Laboratory of Geospace Environment and Geodesy, Ministry of Education 14-02-02

Shandong Provincial Natural Science Foundation ZR2016DB30

the Qingdao Indigenous Innovation Program 16-5-1-25-jch

the Fundamental Research Funds for the Central Universities 2042014kf0066

More Information
    Author Bio:

    LI Peng, PhD, lecturer, specializes in InSAR deformation monitoring. E-mail:pengli@ouc.edu.cn

    Corresponding author:

    LIU Jingnan, professor, Academican of Chinese Academy of Engineering. E-mail:jnliu@whu.edu.cn

  • 摘要: 随着人们对大尺度地形信息与地表环境变化监测需求的提升,以及哨兵1号(Sentinel-1A)、大地2号(ALOS-2)等合成孔径雷达(synthetic aperture radar,SAR)卫星的宽幅模式数据不断获取,宽幅雷达干涉测量(SAR interferometry,InSAR)技术已成为大尺度地形测绘、地球动力学(地震、火山、滑坡等)与人工地物结构健康监测等领域的研究热点。分析了两类宽幅SAR数据,即扫描(ScanningSAR,ScanSAR)模式与逐行扫描地形观测(terrain observation by progressive scans SAR,TOPSAR)模式开展干涉测量的主要限制条件与解决方法,探讨了宽幅InSAR形变监测关键误差估计与改正方法、时间序列分析技术与方位向位移观测技术,并给出2008年矩震级Mw 7.1新疆于田地震同震、震后形变监测应用。随着宽幅SAR数据的不断积累,宽幅InSAR大地测量学有望得到深入发展与应用。
    Abstract: The increasing demands for large-scale terrain information and land surface environmental change monitoring, as well as increasing availability of wide-swath (WS) SAR (Synthetic Aperture Radar) data acquisitions from the Sentinel-1A and ALOS-2, WS InSAR (SAR Interferometry) technology has made InSAR a hot research topic in the fields of large-scale topographic surveying and mapping, Geodynamics (earthquakes, volcanoes, landslides, etc.) and structural monitoring, . In this paper, on the basis of our existing research and the recent research achievements, we review the two kinds of WS SAR acquisition geometries, ScanSAR (Scanning SAR) mode and TOPS (Terrain Observation by Progressive Scans) mode, and analyze the main limitations and solutions in InSAR applications. We investigate the key sources of error in deformation monitoring, WS InSAR time series analysis methods, azimuth displacement observation methods, and the applications of coseismic and postseismic crustal deformation monitoring during the 2008 Mw7.1 Yutian Earthquake. We end with a discussion of the next generation high resolution WS SAR satellite and summarize trends in WS InSAR. With continuous data acquisition, WS InSAR Geodesy will achieve in-depth development.
  • 致谢: 感谢梁存任和冯万鹏博士在宽幅干涉测量和同震建模等过程提供的帮助;感谢欧空局(ESA Category-1 Project: 8690) 提供的ScanSAR数据。
  • 图  1   TOPS模式数据干涉测量处理流程图(改自Prats-Iraola等[17])

    Figure  1.   TOPS Interferometric Processing Chain (Modified from Prats-Iraola et al.[17])

    图  2   于田震后3次Mw>5.地震及余震分布

    Figure  2.   Three Mw>5.3 Events and Aftershocks after 2008 Mw 7.1 Yutian Earthquake

    图  3   2008年于田地震同震干涉图、模型与残差

    Figure  3.   Deformation Phase, Coseismic Model and Phase Difference of 2008 Mw7.1 Yutian Earthquake from WS InSAR Time Series Analysis

    图  4   于田地震震后形变位移图

    Figure  4.   Postseismic Deformation Map of 2008 Mw7.1 Yutian Earthquake

  • [1] 李永生, 张景发, 李振洪, 等.利用短基线集干涉测量时序分析方法监测北京市地面沉降[J].武汉大学学报·信息科学版, 2013, 38(11):1374-1377 http://ch.whu.edu.cn/CN/abstract/abstract2813.shtml

    Li Yongsheng, Zhang Jingfa, Li Zhenhong, et al. Land Subsidence in Beijing City from InSAR Time Series Analysis with Small Baseline Subset[J]. Geomatics and Information Science of Wuhan University, 2013, 38(11):1374-1377 http://ch.whu.edu.cn/CN/abstract/abstract2813.shtml

    [2] 何平, 许才军, 温扬茂, 等.利用PALSAR数据研究长白山火山活动性[J].武汉大学学报·信息科学版, 2015, 40(2):214-221 http://ch.whu.edu.cn/CN/abstract/abstract3425.shtml

    He Ping, Xu Caijun, Wen Yangmao, et al. Estimating the Magma Activity of the Changbaishan Vocano with PALSAR Data[J]. Geomatics and Information Science of Wuhan University, 2015, 40(2):214-221 http://ch.whu.edu.cn/CN/abstract/abstract3425.shtml

    [3] 杨成生, 张勤, 赵超英, 等.短基线集InSAR技术用于大同盆地地面沉降、地裂缝及断裂活动监测[J].武汉大学学报·信息科学版, 2014, 39(8):945-950 http://ch.whu.edu.cn/CN/abstract/abstract3049.shtml

    Yang Chengsheng, Zhang Qin, Zhao Chaoying, et al. Small Baseline Bubset InSAR Technology Used in Datong Basin Ground Subsidence, Fissure and Fault Zone Monitoring[J]. Geomatics and Information Science of Wuhan University, 2014, 39(8):945-950 http://ch.whu.edu.cn/CN/abstract/abstract3049.shtml

    [4] 许才军, 何平, 温扬茂, 等.利用CR-InSAR技术研究鲜水河断层地壳形变[J].武汉大学学报·信息科学版, 2012, 37(3):302-305 http://ch.whu.edu.cn/CN/abstract/abstract137.shtml

    Xu Caijun, He Ping, Wen Yangmao, et al. Crustal Deformation Monitoring of Xianshuihe Fault by CR-InSAR[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3):302-305 http://ch.whu.edu.cn/CN/abstract/abstract137.shtml

    [5]

    Tomiyasu K. Conceptual Performance of a Satellite Borne Wide Swath Synthetic Aperture Radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 1981, GE-19(2):108-116 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4157222

    [6]

    Buckley S M, Gudipati K. Evaluating ScanSAR Interferometry Deformation Time Series Using Bursted Stripmap Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6):2335-2342 doi: 10.1109/TGRS.2010.2102360

    [7]

    Lindsey E O, Natsuaki R, Xu X, et al. Line-of-Sight Displacement from ALOS-2 Interferometry:Mw 7.8 Gorkha Earthquake and Mw 7.3 Aftershock[J]. Geophysical Research Letters, 2015, 42(16):6655-6661 doi: 10.1002/2015GL065385

    [8]

    Zan F D, Guarnieri A M. TOPSAR:Terrain Observation by Progressive Scans[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(9):2352-2360 doi: 10.1109/TGRS.2006.873853

    [9]

    Prats-Iraola P, Scheiber R, Marotti L, et al. TOPS Interferometry with TerraSAR-X[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, PP(99):1-10 http://ieeexplore.ieee.org/document/6130599/

    [10]

    Yague-Martinez N, Prats-Iraola P, Rodriguez Gonzalez F, et al. Interferometric Processing of Sentinel-1 TOPS Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 99:1-15 http://ieeexplore.ieee.org/document/7390052/

    [11]

    González P J, Bagnardi M, Hooper A J, et al. The 2014-2015 Eruption of Fogo Volcano:Geodetic Modeling of Sentinel-1 TOPS Interferometry[J]. Geophysical Research Letters, 2015, 42(21):9239-9246 doi: 10.1002/2015GL066003

    [12]

    Feng W, Lindsey E, Barbot S, et al. Source Characteristics of the 2015 MW 7.8 Gorkha Earthquake and Its MW 7.2 Aftershock from Space Geodesy[J]. Tectonophysics, 2016, 713(126972):1-12

    [13]

    Elliott J R, Jolivet R, Gonzalez P J, et al. Himalayan Megathrust Geometry and Relation to Topography Revealed by the Gorkha Earthquake[J]. Nature Geoscience, 2016, 9(2):174-180 doi: 10.1038/ngeo2623

    [14]

    Tong X, Sandwell D T, Fialko Y. Coseismic Slip Model of the 2008 Wenchuan Earthquake Derived from Joint Inversion of InSAR GPS and Field Data[J]. Journal of Geophysical Research, 2010, 115:1-19

    [15]

    Guarnieri A M, Rocca F. Combination of Low-and High-Resolution SAR Images for Differential Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(4):2035-2049 doi: 10.1109/36.774714

    [16]

    Rosich B, Monti-Guarnieri A, D'Aria D, et al. ASAR Wide Swath Mode Interferometry:Optimisation of the Scan Pattern Synchronization[C]. The Envisat Symposium(ESA SP-636), Montreux, Switzerland, 2007

    [17]

    Prats-Iraola P, Nannini M, Scheiber R, et al. Sentinel-1 Assessment of the Interferometric Wide-Swath Mode[C]. IGARSS 2015, Milan, Italy, 2015

    [18]

    Ducret G, Doin M P, Grandin R, et al. DEM Corrections Before Unwrapping in a Small Baseline Strategy for InSAR Time Series Analysis[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(3):696-700 doi: 10.1109/LGRS.2013.2276040

    [19]

    Prats-Iraola P, Rodriguez-Cassola M, De Zan F, et al. Role of the Orbital Tube in Interferometric Spaceborne SAR Missions[J]. IEEE Geosience and Remote Sensing Letters, 2015, 12(7):1486-1490 doi: 10.1109/LGRS.2015.2409885

    [20]

    Jolivet R, Agram P S, Lin N Y, et al. Improving InSAR Geodesy Using Global Atmospheric Models[J]. Journal of Geophysical Research:Solid Earth, 2014, 119(3):2324-2341 doi: 10.1002/2013JB010588

    [21]

    Li Z H, Pasquali P, Cantone A, et al. MERIS Atmospheric Water Vapor Correction Model for Wide Swath Interferometric Synthetic Aperture Radar[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(2):257-266 doi: 10.1109/LGRS.2011.2166053

    [22]

    Marinkovic P, Larsen Y. Consequences of Long-Term ASAR Local Oscillator Frequency Decay-An Empirical Study of 10 Years of Data[C]. Living Planet Symposium, Edinburgh, UK, 2013

    [23]

    Spaans K, Hreinsdóttir S, Hooper A, et al. Crustal Movements due to Iceland's Shrinking Ice Caps Mimic Magma Inflow Signal at Katla Volcano[J]. Scientific Reports, 2015, 5:10285 doi: 10.1038/srep10285

    [24]

    De Zan F, Prats-Iraola P, Scheiber R, et al. Interferometry with TOPS:Coregistration and Azimuth Shifts[C]. The 10th European Conference on Synthetic Aperture Radar, Berlin, Germary, 2014

    [25]

    Guarnieri A M. ScanSAR Interferometric Monitoring using the PS Technique[C]. The ERS-ENVISAT Symposium, Gothenburg, Sweden, 2000

    [26]

    Pepe A, Bertran Ortiz A, Lundgren P R, et al. The Stripmap-ScanSAR SBAS Approach to Fill Gaps in Stripmap Deformation Time Series with ScanSAR Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(12):4788-4804 doi: 10.1109/TGRS.2011.2167979

    [27] 李鹏, 宽幅InSAR观测阿尔金断裂带西段震间应变累积的研究[D]. 武汉: 武汉大学, 2013

    Li Peng. Interseismic Strain Accumulation across the Western Altyn Tagh Fault from the Wide-Swath InSAR Observations[D]. Wuhan:Wuhan University, 2013

    [28]

    Pagli C, Wang H, Wright T J, et al. Current Plate Boundary Deformation of the Afar Rift from a 3-D Velocity Field Inversion of InSAR and GPS[J]. Journal of Geophysical Research:Solid Earth, 2014, 119(11):2014JB011391

    [29]

    Wegmüller U, Werner C, Strozzi T, et al. Sentinel-1 Support in the GAMMA Software[C]. ESA FRINGE 2015 Workshop, ESA-ESRIN, Frascati, Rome, Italy, 2015

    [30]

    Jung H S, Lu Z, Zhang L. Feasibility of Along-Track Displacement Measurement from Sentinel-1 Interferometric Wide-Swath Mode[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1):573-578 doi: 10.1109/TGRS.2012.2197861

    [31]

    Scheiber R, Jager M, Prats P-Iraola, P, et al. Speckle Tracking and Interferometric Processing of TerraSAR-X TOPS Data for Mapping Nonstationary Scenarios[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 99:1-12 http://ieeexplore.ieee.org/document/6926747/

    [32]

    Elliott J R, Walters R J, England P C, et al. Extension on the Tibetan Plateau:Recent Normal Faulting Measured by InSAR and Body Wave Seismology[J]. Geophysical Journal International, 2010, 183(2):503-535 doi: 10.1111/j.1365-246X.2010.04754.x

    [33]

    Bie L, Ryder I. Recent Seismic and Aseismic Activity in the Ashikule Stepover Zone, NW Tibet[J]. Geophysical Journal International, 2014, 198(3):1632-1643 doi: 10.1093/gji/ggu230

    [34]

    Gebert N, Krieger G, Moreira A. Digital Beamforming on Receive:Techniques and Optimization Strategies for High-Resolution Wide-Swath SAR Imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2):564-592 doi: 10.1109/TAES.2009.5089542

    [35]

    Villano M, Krieger G, Moreira A. Staggered SAR:High-Resolution Wide-Swath Imaging by Continuous PRI Variation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(7):4462-4479 doi: 10.1109/TGRS.2013.2282192

    [36]

    Moreira A, Krieger G, Hajnsek I, et al. Tandem-L:A Highly Innovative Bistatic SAR Mission for Global Observation of Dynamic Processes on the Earth's Surface[J]. IEEE Geoscience and Remote Sensing Magazine, 2015, 3(2):8-23 doi: 10.1109/MGRS.2015.2437353

  • 期刊类型引用(12)

    1. 徐燕飞,胡振琪,陈永春,崔瑞豪,苗伟,冯占杰. 基于遥感生态指数的淮南矿区生态环境质量变化分析. 煤炭工程. 2025(01): 195-202 . 百度学术
    2. 张浩斌,王婉,宋妤婧,苗林光,马超. 基于改进遥感生态指数的干旱内流区生态质量评价——以阴山北麓塔布河流域为例. 生态学报. 2024(02): 523-543 . 百度学术
    3. 张昊杰,杨立娟,施婷婷,王帅. GF-6 WFV传感器数据的缨帽变换系数推导. 自然资源遥感. 2024(02): 105-115 . 百度学术
    4. 钟安亚,孙娟,胡春明,谷海红. 基于RSEI的北京王平煤矿生态环境修复效果评估及预测. 矿业安全与环保. 2023(04): 89-96 . 百度学术
    5. 王新驰,鲁铁定,龚循强,周秀芳. 基于改进遥感生态指数的南昌市生态环境质量监测与评价. 科学技术与工程. 2023(35): 15319-15327 . 百度学术
    6. 吴群英,苗彦平,陈秋计,侯恩科,李继业. 基于Sentinel-2的荒漠化矿区生态环境监测. 采矿与岩层控制工程学报. 2022(01): 91-98 . 百度学术
    7. 晏红波,杨志高,卢献健,韦晚秋,黎振宝. 基于改进RSEDI的典型喀斯特地区生态环境质量时空变化. 科学技术与工程. 2022(11): 4646-4653 . 百度学术
    8. 刘建强,叶小敏,陈鋆. 面向鄱阳湖洪涝风险分析的HY-1C/D卫星CZI影像水体面积与水位关系研究. 华中师范大学学报(自然科学版). 2022(03): 505-512 . 百度学术
    9. 史宇骁,李阳,孟翊,赵志远,张婷玉,王栋,袁琳. 1989—2020年长江口九段沙湿地格局演变及影响因素. 应用生态学报. 2022(08): 2229-2236 . 百度学术
    10. 梁齐云,苏涛,张灿,王建,周丽丽. 基于改进遥感生态指数的黄山市生态质量评价研究. 地球物理学进展. 2022(04): 1448-1456 . 百度学术
    11. 程琳琳,王振威,田素锋,柳亚彤,孙梦尧,杨玉曼. 基于改进的遥感生态指数的北京市门头沟区生态环境质量评价. 生态学杂志. 2021(04): 1177-1185 . 百度学术
    12. 陈超,陈慧欣,陈东,张自力,张旭锋,庄悦,褚衍丽,陈建裕,郑红. 舟山群岛海岸线遥感信息提取及时空演变分析. 国土资源遥感. 2021(02): 141-152 . 百度学术

    其他类型引用(21)

图(4)
计量
  • 文章访问数:  2716
  • HTML全文浏览量:  193
  • PDF下载量:  732
  • 被引次数: 33
出版历程
  • 收稿日期:  2016-04-01
  • 发布日期:  2017-09-04

目录

    /

    返回文章
    返回