利用低阶大地水准面异常反演大尺度核幔边界起伏

崔荣花, 方剑, 刘杰, 李红蕾, 陈铭

崔荣花, 方剑, 刘杰, 李红蕾, 陈铭. 利用低阶大地水准面异常反演大尺度核幔边界起伏[J]. 武汉大学学报 ( 信息科学版), 2018, 43(5): 658-663. DOI: 10.13203/j.whugis20150577
引用本文: 崔荣花, 方剑, 刘杰, 李红蕾, 陈铭. 利用低阶大地水准面异常反演大尺度核幔边界起伏[J]. 武汉大学学报 ( 信息科学版), 2018, 43(5): 658-663. DOI: 10.13203/j.whugis20150577
CUI Ronghua, FANG Jian, LIU Jie, LI Honglei, CHEN Ming. Using Lower Degrees of Geoid Anomalies to Invert Large Scale Undulations of Core-Mantle Boundary[J]. Geomatics and Information Science of Wuhan University, 2018, 43(5): 658-663. DOI: 10.13203/j.whugis20150577
Citation: CUI Ronghua, FANG Jian, LIU Jie, LI Honglei, CHEN Ming. Using Lower Degrees of Geoid Anomalies to Invert Large Scale Undulations of Core-Mantle Boundary[J]. Geomatics and Information Science of Wuhan University, 2018, 43(5): 658-663. DOI: 10.13203/j.whugis20150577

利用低阶大地水准面异常反演大尺度核幔边界起伏

基金项目: 

国家重点基础研究发展计划(973计划) 2013CB733301

详细信息
    作者简介:

    崔荣花, 博士生, 主要从事地球重力场研究。rhcui@asch.whigg.ac.cn

  • 中图分类号: P223

Using Lower Degrees of Geoid Anomalies to Invert Large Scale Undulations of Core-Mantle Boundary

Funds: 

>The National Program on Key Basic Researth Project of China(973 Program) 2013CB733301

More Information
    Author Bio:

    CUI Ronghua, PhD candidate, specializes in Earth's gravity field. E-mail: rhcui@asch.whigg.ac.cn

  • 摘要: 核幔边界(core-mantle boundary,CMB)是地球内部最重要的物理化学界面之一,地核和地幔通过核幔边界发生多种相互作用,这对地球重力场、地球自转及地磁场等都能产生重要影响。大地水准面异常是地球重力场的重要观测量,反映了地球内部的物质密度异常及界面变化等重要信息。推导了通过大地水准面异常反演核幔边界起伏的公式,利用2~4阶大地水准面异常反演了大尺度核幔边界起伏形态。结果显示,核幔边界起伏的径向幅度达±5 km、与Morelli的地震层析成像结果的幅度接近,但在形态上略有差异。以高为5 km、底边长为1 000 km的棱柱体模型模拟计算了核幔边界密度异常引起的大地水准面异常响应,结果与观测大地水准面异常比较接近。
    Abstract: The core-mantle boundary (CMB) is one of the most important physical and chemical interfaces in the earth's interior, through which a variety of interactions occur between Earth's core and mantle. These interactions might have great impacts on Earth's gravity field, rotation and magnetic field. The geoid anomalies is an important observation of the earth's gravity field, which reflects significant information of the earth's interior, such as material density anomalies and interfaces, etc. A formula using the geoid anomalies to invert undulations of core-mantle boundary was derived. The large-scale undulations of the core-mantle boundary were calculated by this formula from degree 2 to 4. The result showed that the amplitude of core-mantle boundary undulations reached ±5 km, which corresponded to that obtained by Morelli using seismic tomography, but showed some differences in the worldwild distribution. We also simulated influences of the density anomalies in the core-mantle boundary to the geoid undulation using a prism model with height of 5 km and base length of 1 000 km. The result showed that it was closed to the observed value of geoid undulations.
  • 图  1   全球5~12阶大地水准面异常和全球板块构造

    Figure  1.   Global Geoid Anomalies from Degree 5 to 12 and Global Plate Tectonics

    图  2   2-4阶全球大地水准面起伏

    Figure  2.   Global Geoid Undulation from Degree 2 to 4

    图  3   由大地水准面起伏计算的核幔边界起伏

    Figure  3.   Undulation of CMB Computed by Geoid Undulation

    图  4   核幔边界高5 km的棱柱体质量异常计算的地表大地水准面异常

    Figure  4.   Map of Geoid Undulation Computed by a Prism Mass Anomaly with a Height of 5km Located on Core-Mantle Boundary

  • [1]

    Hi de R, Horai K. On the Topography of the Core-Mantle Interface[J]. Phys. Earth Planet. Inter. 1968(1):305-308

    [2]

    Morelli A, Dziewonski A M. Topography of the Core-Mantle Boundary and Lateral Homogeneity of Liquid Core[J]. Nature, 1987, 235:678-683 http://www.sciencedirect.com/science/article/pii/0031920168900241

    [3]

    Khan M.A. Depth of Sources of Gravity Anomalies[J].Geophysical Journal International, 1977, 48(2):197-209 doi: 10.1111/j.1365-246X.1977.tb01296.x

    [4] 朱介涛.下地幔及核幔边界结构及地球动力学[J].地球科学进展, 2000, 15(2):139-142 http://www.adearth.ac.cn/CN/abstract/abstract1376.shtml

    Zhu Jietao. Structure of Lower Mantle and Core-Mantle Boundary Region and its Geodynamics[J]. Advance in Earth Sciences, 2000, 15(2):139-142 http://www.adearth.ac.cn/CN/abstract/abstract1376.shtml

    [5]

    Trešl J. The Effect of the Irregularities of the Shape of the Earth's Core-Mantle Boundary on the Observed Acceleration of Gravity[J]. Studia Geophysica et Geodaetica , 1981, 25:5-13 doi: 10.1007/BF01613557

    [6] 傅容珊, 李力刚, 郑大伟, 等.核幔边界动力学:地球自转十年尺度[J].地球科学进展, 1999, 14(6):541-548 http://www.adearth.ac.cn/CN/abstract/abstract3420.shtml

    Fu Rongshan, Li Ligang, Zheng Dawei, et al. Dynamics of the Core-Mantle Boundary and the Decadal Fluctuation in the Earth's Rotation[J]. Advance in Earth Sciences, 1999, 14(6):541-548 http://www.adearth.ac.cn/CN/abstract/abstract3420.shtml

    [7] 王庆良. 地壳形变-地球物理场-日常变化十年尺度相关性研究[D]. 北京: 中国地震局物理研究所, 2003 http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y658599

    Wang Qingliang. Decade-Scale Correlation between Crustal Deformation, Geophysical Variation and Length of Day[D]. Beijing: Institute of Geophysics, China Seismological Bureau, 2003 http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y658599

    [8] 顾震年.日长的十年尺度波动分析和核幔电磁耦合[J].云南天文台台刊, 1999, 14(6):541-548 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yntwttk199903005

    Gu Zhennian. The Decade-Scale Fluctuation Analysis of Length of Day and Electromagnetic Coupling Between Earth's Core and Mantle[J]. Publications of Yunnan Observatory, 1999, 14(6):541-548 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yntwttk199903005

    [9] 方剑, 马宗晋.地球及其形状非对称性的重力学研究[J].武汉大学学报·信息科学版, 2005, 30(8):748-751 http://ch.whu.edu.cn/CN/abstract/abstract2263.shtml

    Fang Jian, Ma Zongjin. Asymmetry of the Earth and its Shape by Gravity Method[J]. Geomatics and Information Science of Wuhan University, 2005, 30(8):748-751 http://ch.whu.edu.cn/CN/abstract/abstract2263.shtml

    [10]

    Borre K. Geoid Undulations Computed from EGM96[D]. Alborg: Alborg University, 2004

    [11]

    Bowin C. Depth of Principal Mass Anomalies Contributing to Earth's Geoid Undulations and Gravity Anomalies[J]. Marine Geodesy, 1983(7):61-101 doi: 10.1080/15210608309379476

    [12] 贺传松, 左兆荣.地球重力模型中球谐函数阶数的异常源深度估计[J].东北地震研究, 1995, 11(1):13-17 http://www.cqvip.com/QK/98587A/199501/4001271296.html

    He Changsong, Zuo Zaorong. Spherical-armonic Order of Gravity Potential and Anomaly Mass[J]. Seismological Researth of Northeast China, 1995, 11(1):13-17 http://www.cqvip.com/QK/98587A/199501/4001271296.html

    [13] 张赤军, 任康.由扰动位确定核幔起伏[J].地球物理学报, 1994, 37(1):115-119 http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX401.012.htm

    Zhang Chijun, Ren Kang. A Method for Determining Depth Variations of Core-Mantle Boundary with Disturbing Potential[J]. Chinese Journal of Geophysics, 1994, 37(1):115-119 http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX401.012.htm

    [14] 李金文, 管泽霖.下地幔侧向不均匀及绝对板块运动对大地水准面的影响[J].武汉测绘科技大学学报, 1991, 16(2):28-36 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=whch199102003&dbname=CJFD&dbcode=CJFQ

    Li Jinwen, Guan Zelin. The Effect of Lateral Heterogeneities of Lower Mantle and Absolute Plate Motions on Geoid[J]. Geomatics and Information Science of Wuhan University, 1991, 16(2):28-36 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=whch199102003&dbname=CJFD&dbcode=CJFQ

    [15] 方剑, 许厚泽.中国及邻区大地水准面异常的场源深度探讨[J].地球物理学报, 2002, 45(1):42-48 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb200201006

    Fang Jian, Hsu Houtze. A Study of the Depth of Geoid Anomaly Sources in China and its Adjacent Regions[J]. Chinese Journal of Geophysics, 2002, 45(1):42-48 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb200201006

    [16]

    Yoshida M, Nakakuki T. Effects on the Long-wavelength Goeid Anomaly of Lateral Viscosity Variations Caused by Stiff Subducting Slabs, Weak Plate Margins and Lower Mantle Rheology[J]. Phys Earth Planet Inter, 2009, 172:278-288 doi: 10.1016/j.pepi.2008.10.018

    [17] 郝晓光, 胡小刚, 方剑, 等.从克拉通破坏到板块动力模型的研究[J].地球物理学报, 2014, 57(7):2344-2351 doi: 10.6038/cjg20140728

    Hao Xiaoguang, Hu Xiaogang, Fang Jian, et al. From the Craton Destruction to the Study of Plate Dynamical Model[J]. Chinese Journal of Geophysics, 2014, 57(7):2344-2351 doi: 10.6038/cjg20140728

    [18]

    van Hees G L. Some Elementary Relations between Mass Distributions inside the Earth and Geoid and Gravity Field[J]. Geodynamics, 2000, 29:111-123 doi: 10.1016/S0264-3707(99)00007-1

    [19]

    Dziewonski A M and Andersion D L. Preliminary Reference Earth Model[J]. Phys. Earth Planet Int., 1981, 11:217-356 https://www.sciencedirect.com/science/article/pii/0031920181900467

    [20] 楼立志. 中国及邻区模拟大地水准面的研究[D]. 武汉: 中国科学院测量与地球物理研究所, 2004 http://cdmd.cnki.com.cn/article/cdmd-80057-2004097816.htm

    Lou Lizhi. A Study on Simulated Geoid in China and its Adjacent Regions[D]. Wuhan: Institute of Geodesy and Geophysics, Chinese Academy of Sciences, 2004 http://cdmd.cnki.com.cn/article/cdmd-80057-2004097816.htm

    [21]

    Morelli A. Core-Mantle Boundary Topography, Seismology[M]//Gubbins D, Herrero-Bervera E. Encyclopedia of Geomagnetism and Paleomagnetism. Dordrecht: Springer, 2007

  • 期刊类型引用(10)

    1. 曾广泉,马韬,张孟希,戴妍,陈凯文,丁继辉,俞双恩,王中文. 基于无人机多光谱影像的不同施氮量水稻LAI反演方法研究. 江苏农业科学. 2024(20): 41-48 . 百度学术
    2. 高钰琪,许桂玲,冯跃华,王晓珂,任红军,由晓璇,韩志丽,李家乐. 基于冠层高光谱植被指数的水稻产量预测模型研究. 中国稻米. 2023(05): 38-44 . 百度学术
    3. 彭晓伟,张爱军,王楠,赵丽,杨晓楠. 高光谱技术在土壤及适种作物的研究进展. 遥感信息. 2022(01): 32-39 . 百度学术
    4. 王晓珂,刘婷婷,许桂玲,冯跃华,彭金凤,李杰,罗强鑫,韩志丽,卢苇,PHONENASAY Somsana. 基于冠层高光谱遥感的杂交水稻植被指数氮素营养诊断模型. 中国稻米. 2021(03): 21-29 . 百度学术
    5. 王浩淼,宋苗语,李翔,扈朝阳,鲁任翔,王翔,马会勤. 无人机高光谱遥感监测葡萄长势与缺株定位. 园艺学报. 2021(08): 1626-1634 . 百度学术
    6. 刘雅婷,龚龑,段博,方圣辉,彭漪. 多时相NDVI与丰度综合分析的油菜无人机遥感长势监测. 武汉大学学报(信息科学版). 2020(02): 265-272 . 百度学术
    7. 陈晓凯,李粉玲,王玉娜,史博太,侯玉昊,常庆瑞. 无人机高光谱遥感估算冬小麦叶面积指数. 农业工程学报. 2020(22): 40-49 . 百度学术
    8. 落莉莉,常庆瑞,武旭梅,杨景,李粉玲,王琦. 夏玉米叶片光合色素含量高光谱估算. 干旱地区农业研究. 2019(04): 178-183 . 百度学术
    9. 张良培,刘蓉,杜博. 使用量子优化算法进行高光谱遥感影像处理综述. 武汉大学学报(信息科学版). 2018(12): 1811-1818 . 百度学术
    10. 李亚妮,鲁蕾,刘勇. 基于PROSAIL模型的水稻田缨帽三角-叶面积指数模型及其应用. 应用生态学报. 2017(12): 3976-3984 . 百度学术

    其他类型引用(17)

图(4)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 27
出版历程
  • 收稿日期:  2016-04-30
  • 发布日期:  2018-05-04

目录

    /

    返回文章
    返回