局部相位特征描述的多源遥感影像自动匹配

An Automatic Matching Method Based on Local Phase Feature Descriptor for Multi-source Remote Sensing Images

  • 摘要: 由于影像间显著的几何和辐射差异,多源遥感影像自动匹配一直是目前研究的难点问题。首先引入具有光照和对比度不变性的相位一致性模型,并对其进行扩展,构建相位一致性的特征方向信息,然后借助于梯度方向直方图的模板结构,利用其特征值和特征方向,建立一种局部特征描述符——局部相位一致性方向直方图(local histogram of orientated phase congruency,LHOPC),最后利用欧氏距离作为匹配测度进行同点名识别。对四组多源遥感影像进行试验,其结果表明,相比于尺度不变特征转换和加速鲁棒性特征算法,LHOPC能更为有效的抵抗影像间的辐射差异,提高了匹配性能。

     

    Abstract: This paper introduces the phase congruency model with illumination and contrast invariance for image matching, and extends the model to feature orientation in phase congruency. Based on the orientated gradient histogram concept, a local feature descriptor named "local histogram of orientated phase congruency (LHOPC)" is developed using the intensity and orientation of phase congruency. The Euclidean distance between LHOPC descriptors is used as similarity metric to achieve correspondences. The proposed method is evaluated with four pairs of multi-source remote sensing images. The experimental results show that LHOPC is more robust to the radiation differences between images, and performs better than the SIFT and SURF algorithms.

     

/

返回文章
返回